scispace - formally typeset
Search or ask a question
Author

Dobroslav Tsonev

Bio: Dobroslav Tsonev is an academic researcher from University of Edinburgh. The author has contributed to research in topics: Visible light communication & Orthogonal frequency-division multiplexing. The author has an hindex of 27, co-authored 58 publications receiving 3712 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented a visible light communication (VLC) system based on a single 50-μm gallium nitride light emitting diode (LED) with a 3-dB modulation bandwidth of at least 60 MHz.
Abstract: This letter presents a visible light communication (VLC) system based on a single 50- μm gallium nitride light emitting diode (LED). A device of this size exhibits a 3-dB modulation bandwidth of at least 60 MHz - significantly higher than commercially available white lighting LEDs. Orthogonal frequency division multiplexing is employed as a modulation scheme. This enables the limited modulation bandwidth of the device to be fully used. Pre- and postequalization techniques, as well as adaptive data loading, are successfully applied to achieve a demonstration of wireless communication at speeds exceeding 3 Gb/s. To date, this is the fastest wireless VLC system using a single LED.

680 citations

Journal ArticleDOI
TL;DR: This work investigates the communication capabilities of off-the-shelf LDs in a number of scenarios with illumination constraints and indicates that optical wireless access data rates in the excess of 100 Gb/s are possible at standard indoor illumination levels.
Abstract: Potential visible light communication (VLC) data rates at over 10 Gb/s have been recently demonstrated using light emitting diodes (LEDs). The disadvantage is, LEDs have an inherent trade-off between optical efficiency and bandwidth. Consequently, laser diodes (LDs) can be considered as a very promising alternative for better utilization of the visible light spectrum for communication purposes. This work investigates the communication capabilities of off-the-shelf LDs in a number of scenarios with illumination constraints. The results indicate that optical wireless access data rates in the excess of 100 Gb/s are possible at standard indoor illumination levels.

321 citations

Journal ArticleDOI
TL;DR: VLC is examined as a viable and ready complement to RF indoor communications, and advancement toward future communications.
Abstract: Due to the large growth of mobile communications over the past two decades, cellular systems have resorted to fuller and denser reuse of bandwidth to cope with the growing demand. On one hand, this approach raises the achievable system capacity. On the other hand, however, the increased interference caused by the dense spatial reuse inherently limits the achievable network throughput. Therefore, the spectral efficiency gap between users' demand and network capabilities is ever growing. Most recently, visible light communication has been identified as well equipped to provide additional bandwidth and system capacity without aggregating the interference in the mobile network. Furthermore, energy-efficient indoor lighting and the large amount of indoor traffic can be combined inherently. In this article, VLC is examined as a viable and ready complement to RF indoor communications, and advancement toward future communications. Various application scenarios are discussed, presented with supporting simulation results, and the current technologies and challenges pertaining to VLC implementation are investigated. Finally, an overview of recent VLC commercialization is presented.

313 citations

Proceedings ArticleDOI
01 Dec 2011
TL;DR: A modified technique is proposed which avoids bit error propagation whilst retaining the benefits of the concept and can lead to a decrease of the peak system power, which is highly beneficial in the context of optical wireless communication.
Abstract: A novel modulation technique coined SIM-OFDM was recently proposed. SIM-OFDM uses different frequency carrier states to convey information and leads to increased performance in comparison to conventional OFDM. Additionally, its innovative structure can lead to a decrease of the peak system power, which is highly beneficial in the context of optical wireless communication. One of the issues of the original SIM-OFDM scheme is a potential bit error propagation which could lead to significant burst errors. The current paper proposes a modified technique which avoids bit error propagation whilst retaining the benefits of the concept.

241 citations

Proceedings ArticleDOI
06 May 2012
TL;DR: U-OFDM uses different time sample states and an innovative rearrangement of the Orthogonal Frequency Division Multiplexing (OFDM) frame to create unipolar OFDM signals required for Optical Wireless Communication (OWC) with Light Emitting Diodes (LEDs).
Abstract: A novel modulation technique coined U-OFDM is proposed. U-OFDM uses different time sample states and an innovative rearrangement of the Orthogonal Frequency Division Multiplexing (OFDM) frame which allow for the creation of unipolar OFDM signals required for Optical Wireless Communication (OWC) with Light Emitting Diodes (LEDs). In comparison to similar techniques like DC-biased Optical OFDM (DCO-OFDM) and Asymmetrically Clipped Optical OFDM (ACO-OFDM), U-OFDM is both optically and electrically more power efficient in an Additive White Gaussian Noise (AWGN) channel, which is prevalent in an optical wireless system.

228 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art technologies on photonics-based terahertz communications are compared with competing technologies based on electronics and free-space optical communications.
Abstract: This Review covers the state-of-the-art technologies on photonics-based terahertz communications, which are compared with competing technologies based on electronics and free-space optical communications. Future prospects and challenges are also discussed. Almost 15 years have passed since the initial demonstrations of terahertz (THz) wireless communications were made using both pulsed and continuous waves. THz technologies are attracting great interest and are expected to meet the ever-increasing demand for high-capacity wireless communications. Here, we review the latest trends in THz communications research, focusing on how photonics technologies have played a key role in the development of first-age THz communication systems. We also provide a comparison with other competitive technologies, such as THz transceivers enabled by electronic devices as well as free-space lightwave communications.

1,238 citations

Journal ArticleDOI
TL;DR: This survey provides a technology overview and review of existing literature of visible light communication and sensing and outlines important challenges that need to be addressed in order to design high-speed mobile networks using visible light Communication-VLC.
Abstract: The solid-state lighting is revolutionizing the indoor illumination. Current incandescent and fluorescent lamps are being replaced by the LEDs at a rapid pace. Apart from extremely high energy efficiency, the LEDs have other advantages such as longer lifespan, lower heat generation, and improved color rendering without using harmful chemicals. One additional benefit of LEDs is that they are capable of switching to different light intensity at a very fast rate. This functionality has given rise to a novel communication technology (known as visible light communication—VLC) where LED luminaires can be used for high speed data transfer. This survey provides a technology overview and review of existing literature of visible light communication and sensing. This paper provides a detailed survey of 1) visible light communication system and characteristics of its various components such as transmitter and receiver; 2) physical layer properties of visible light communication channel, modulation methods, and MIMO techniques; 3) medium access techniques; 4) system design and programmable platforms; and 5) visible light sensing and application such as indoor localization, gesture recognition, screen-camera communication, and vehicular networking. We also outline important challenges that need to be addressed in order to design high-speed mobile networks using visible light communication.

1,208 citations

Journal ArticleDOI
TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract: The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.

935 citations

Journal ArticleDOI
TL;DR: This paper will show how LiFi takes VLC further by using light emitting diodes (LEDs) to realise fully networked wireless systems to illustrate that LiFi attocells are not a theoretical concept any more, but at the point of real-world deployment.
Abstract: This paper attempts to clarify the difference between visible light communication (VLC) and light-fidelity (LiFi). In particular, it will show how LiFi takes VLC further by using light emitting diodes (LEDs) to realise fully networked wireless systems. Synergies are harnessed as luminaries become LiFi attocells resulting in enhanced wireless capacity providing the necessary connectivity to realise the Internet-of-Things, and contributing to the key performance indicators for the fifth generation of cellular systems (5G) and beyond. It covers all of the key research areas from LiFi components to hybrid LiFi/wireless fidelity (WiFi) networks to illustrate that LiFi attocells are not a theoretical concept any more, but at the point of real-world deployment.

760 citations

Journal ArticleDOI
TL;DR: It is shown via computer simulations that the proposed OFDM with index modulation scheme achieves significantly better error performance than classical OFDM due to the information bits carried in the spatial domain by the indices of OFDM subcarriers.
Abstract: In this paper, a novel orthogonal frequency division multiplexing (OFDM) scheme, called OFDM with index modulation (OFDM-IM), is proposed for operation over frequency-selective and rapidly time-varying fading channels In this scheme, the information is conveyed not only by M-ary signal constellations as in classical OFDM, but also by the indices of the subcarriers, which are activated according to the incoming bit stream Different low complexity transceiver structures based on maximum likelihood detection or log-likelihood ratio calculation are proposed and a theoretical error performance analysis is provided for the new scheme operating under ideal channel conditions Then, the proposed scheme is adapted to realistic channel conditions such as imperfect channel state information and very high mobility cases by modifying the receiver structure The approximate pairwise error probability of OFDM-IM is derived under channel estimation errors For the mobility case, several interference unaware/aware detection methods are proposed for the new scheme It is shown via computer simulations that the proposed scheme achieves significantly better error performance than classical OFDM due to the information bits carried by the indices of OFDM subcarriers under both ideal and realistic channel conditions

752 citations