scispace - formally typeset
Search or ask a question
Author

Doddabhadrappla Gowda Prakasha

Other affiliations: Karnatak University
Bio: Doddabhadrappla Gowda Prakasha is an academic researcher from Davangere University. The author has contributed to research in topics: Laplace transform & Fractional calculus. The author has an hindex of 27, co-authored 88 publications receiving 1905 citations. Previous affiliations of Doddabhadrappla Gowda Prakasha include Karnatak University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the approximated analytical solutions for nonlinear dispersive fractional Zakharov-Kuznetsov (FZK(a, b, c)) equations are obtained with the help of two novel techniques, called fractional natural decomposition method (FNDM) and q-homotopy analysis transform method (q-HATM).

52 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a fractional natural decomposition method (FNDM) for fractional generalized Hirota-Satsuma coupled Korteweg-de-Vries (KdV) and coupled modified KdV (mKDV) equations with the aid of an efficient computational scheme.
Abstract: The aim of the present investigation to find the solution for fractional generalized Hirota–Satsuma coupled Korteweg–de-Vries (KdV) and coupled modified KdV (mKdV) equations with the aid of an efficient computational scheme, namely, fractional natural decomposition method (FNDM). The considered fractional models play an important role in studying the propagation of shallow-water waves. Two distinct initial conditions are choosing for each equation to validate and demonstrate the effectiveness of the suggested technique. The simulation in terms of numeric has been demonstrated to assure the proficiency and reliability of the future method. Further, the nature of the solution is captured for different value of the fractional order. The comparison study has been performed to verify the accuracy of the future algorithm. The achieved results illuminate that, the suggested computational method is very effective to investigate the considered fractional-order model.

48 citations

Journal ArticleDOI
01 Mar 2020
TL;DR: In this article, the authors proposed a solution for fractional generalized Zakharov (FGZ) equations using q -homotopy analysis transform method ( q -HATM) and analyzed the projected model in terms of fractional order.
Abstract: The pivotal aim of the present work is to find the solution for fractional generalized Zakharov (FGZ) equations using q -homotopy analysis transform method ( q -HATM). The proposed technique is graceful amalgamations of Laplace transform technique with q -homotopy analysis scheme, and fractional derivative defined with Atangana-Baleanu (AB) operator. The fixed point hypothesis considered in order to demonstrate the existence and uniqueness of the obtained solution for the proposed fractional order model. In order to illustrate and validate the efficiency of the proposed technique, we analysed the projected model in terms of fractional order. Moreover, the physical behaviour of the obtained solution has been captured in terms of plots for diverse fractional order and the numerical simulation is also demonstrated. The obtained results elucidate that, the considered algorithm is easy to implement, highly methodical as well as accurate and very effective to analyse the behaviour of coupled nonlinear differential equations of arbitrary order arisen in the connected areas of science and engineering.

45 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2015

3,828 citations

Journal ArticleDOI
TL;DR: In this paper, a new fractional model for human liver involving Caputo-Fabrizio derivative with the exponential kernel was proposed, and the existence of a unique solution was explored by using the Picard-Lindelof approach and the fixed-point theory.
Abstract: In this research, we aim to propose a new fractional model for human liver involving Caputo–Fabrizio derivative with the exponential kernel. Concerning the new model, the existence of a unique solution is explored by using the Picard–Lindelof approach and the fixed-point theory. In addition, the mathematical model is implemented by the homotopy analysis transform method whose convergence is also investigated. Eventually, numerical experiments are carried out to better illustrate the results. Comparative results with the real clinical data indicate the superiority of the new fractional model over the pre-existent integer-order model with ordinary time-derivatives.

460 citations

Journal ArticleDOI
TL;DR: In this paper , the authors analyzed the radiative flow of Maxwell nanoliquid on a stretching cylinder by considering magnetic effect, Stefan blowing and bioconvection effects, and found that the upshot change in thermal and mass relaxation times parameters declines the thermal and concentration pattern, respectively.

405 citations

Book
01 Jan 1970

329 citations

Journal ArticleDOI
TL;DR: The epidemic prophecy for the novel coronavirus (2019-nCOV) epidemic in Wuhan, China is studied by using q-homotopy analysis transform method (q-HATM) and the results show that the used scheme is highly emphatic and easy to implementation for the system of nonlinear equations.
Abstract: 2019-nCOV epidemic is one of the greatest threat that the mortality faced since the World War-2 and most decisive global health calamity of the century. In this manuscript, we study the epidemic prophecy for the novel coronavirus (2019-nCOV) epidemic in Wuhan, China by using q-homotopy analysis transform method (q-HATM). We considered the reported case data to parameterise the model and to identify the number of unreported cases. A new analysis with the proposed epidemic 2019-nCOV model for unreported cases is effectuated. For the considered system exemplifying the model of coronavirus, the series solution is established within the frame of the Caputo derivative. The developed results are explained using figures which show the behaviour of the projected model. The results show that the used scheme is highly emphatic and easy to implementation for the system of nonlinear equations. Further, the present study can confirm the applicability and effect of fractional operators to real-world problems.

170 citations