scispace - formally typeset
Search or ask a question
Author

Domenico Giustiniano

Other affiliations: Disney Research, Telefónica, University of Rome Tor Vergata  ...read more
Bio: Domenico Giustiniano is an academic researcher from IMDEA. The author has contributed to research in topics: Visible light communication & Wireless. The author has an hindex of 29, co-authored 139 publications receiving 2502 citations. Previous affiliations of Domenico Giustiniano include Disney Research & Telefónica.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new data-driven model for automatic modulation classification based on long short term memory (LSTM) is proposed, which learns from the time domain amplitude and phase information of the modulation schemes present in the training data without requiring expert features like higher order cyclic moments.
Abstract: This paper looks into the modulation classification problem for a distributed wireless spectrum sensing network. First, a new data-driven model for automatic modulation classification based on long short term memory (LSTM) is proposed. The model learns from the time domain amplitude and phase information of the modulation schemes present in the training data without requiring expert features like higher order cyclic moments. Analyses show that the proposed model yields an average classification accuracy of close to 90% at varying signal-to-noise ratio conditions ranging from 0 dB to 20 dB. Further, we explore the utility of this LSTM model for a variable symbol rate scenario. We show that a LSTM based model can learn good representations of variable length time domain sequences, which is useful in classifying modulation signals with different symbol rates. The achieved accuracy of 75% on an input sample length of 64 for which it was not trained, substantiates the representation power of the model. To reduce the data communication overhead from distributed sensors, the feasibility of classification using averaged magnitude spectrum data and on-line classification on the low-cost spectrum sensors are studied. Furthermore, quantized realizations of the proposed models are analyzed for deployment on sensors with low processing power.

420 citations

Journal ArticleDOI
TL;DR: In this paper, a new data-driven model for Automatic Modulation Classification (AMC) based on long short term memory (LSTM) is proposed, which learns from the time domain amplitude and phase information of the modulation schemes present in the training data.
Abstract: This paper looks into the technology classification problem for a distributed wireless spectrum sensing network. First, a new data-driven model for Automatic Modulation Classification (AMC) based on long short term memory (LSTM) is proposed. The model learns from the time domain amplitude and phase information of the modulation schemes present in the training data without requiring expert features like higher order cyclic moments. Analyses show that the proposed model yields an average classification accuracy of close to 90% at varying SNR conditions ranging from 0dB to 20dB. Further, we explore the utility of this LSTM model for a variable symbol rate scenario. We show that a LSTM based model can learn good representations of variable length time domain sequences, which is useful in classifying modulation signals with different symbol rates. The achieved accuracy of 75% on an input sample length of 64 for which it was not trained, substantiates the representation power of the model. To reduce the data communication overhead from distributed sensors, the feasibility of classification using averaged magnitude spectrum data, or online classification on the low cost sensors is studied. Furthermore, quantized realizations of the proposed models are analyzed for deployment on sensors with low processing power.

277 citations

Journal ArticleDOI
TL;DR: This experimental analysis shows that wireless connectivity among MAVs is challenged by the mobility and heterogeneity of the nodes, lightweight antenna design, body blockage, constrained embedded resources, and limited battery power.
Abstract: The need for aerial networks is growing with the recent advance of micro aerial vehicles, which enable a wide range of civilian applications. Our experimental analysis shows that wireless connectivity among MAVs is challenged by the mobility and heterogeneity of the nodes, lightweight antenna design, body blockage, constrained embedded resources, and limited battery power. However, the movement and location of MAVs are known and may be controlled to establish wireless links with the best transmission opportunities in time and space. This special ecosystem undoubtedly requires a rethinking of wireless communications and calls for novel networking approaches. Supported by empirical results, we identify important research questions, and introduce potential solutions and directions for investigation.

128 citations

Journal ArticleDOI
TL;DR: This work introduces Electrosense, an initiative that seeks a more efficient, safe and reliable monitoring of the electromagnetic space by improving the accessibility of spectrum data for the general public by designing a collaborative spectrum monitoring network.
Abstract: While radio spectrum allocation is well regulated, there is little knowledge about its actual utilization over time and space. This limitation hinders taking effective actions in various applications including cognitive radios, electrosmog monitoring, and law enforcement. We introduce Electrosense, an initiative that seeks a more efficient, safe and reliable monitoring of the electromagnetic space by improving the accessibility of spectrum data for the general public. A collaborative spectrum monitoring network is designed that monitors the spectrum at large scale with low-cost spectrum sensing nodes. The large set of data is stored and processed in a big data architecture and provided back to the community with an open spectrum data as a service model, that allows users to build diverse and novel applications with different requirements. We illustrate useful usage scenarios of the Electrosense data.

115 citations

Proceedings ArticleDOI
01 Nov 2012
TL;DR: This work builds a prototype and demonstrates bi-directional data exchange in a network of up to four LEDs, and studies the trade-offs in the system design and measures the achievable bit-rate and transmission distances.
Abstract: Visible Light Communication (VLC) is an emerging technology in which Light Emitting Diodes (LEDs) transport information wirelessly, using the visible light spectrum. While most of the research on VLC has focused on wideband white LEDs used in ambient illumination, narrowband and colored LEDs have received little attention. Short-range free-space optical communication based on narrowband LEDs as visible light transmitters and receivers enable a variety of applications, a scenario we refer as LED-to-LED communication. In this paper, we introduce the communication and networking protocols of LED-to-LED communication. Our work addresses fundamental challenges such as efficient collision detection medium access protocol and elimination of light flicker. We build a prototype and demonstrate bi-directional data exchange in a network of up to four LEDs. We further study the trade-offs in the system design and measure the achievable bit-rate and transmission distances.

101 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1977-Nature
TL;DR: Bergh and P.J.Dean as discussed by the authors proposed a light-emitting diode (LEDD) for light-aware Diodes, which was shown to have promising performance.
Abstract: Light-Emitting Diodes. (Monographs in Electrical and Electronic Engineering.) By A. A. Bergh and P. J. Dean. Pp. viii+591. (Clarendon: Oxford; Oxford University: London, 1976.) £22.

1,560 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented, and the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as 3D deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools, such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,395 citations

Journal ArticleDOI
TL;DR: This survey provides a technology overview and review of existing literature of visible light communication and sensing and outlines important challenges that need to be addressed in order to design high-speed mobile networks using visible light Communication-VLC.
Abstract: The solid-state lighting is revolutionizing the indoor illumination. Current incandescent and fluorescent lamps are being replaced by the LEDs at a rapid pace. Apart from extremely high energy efficiency, the LEDs have other advantages such as longer lifespan, lower heat generation, and improved color rendering without using harmful chemicals. One additional benefit of LEDs is that they are capable of switching to different light intensity at a very fast rate. This functionality has given rise to a novel communication technology (known as visible light communication—VLC) where LED luminaires can be used for high speed data transfer. This survey provides a technology overview and review of existing literature of visible light communication and sensing. This paper provides a detailed survey of 1) visible light communication system and characteristics of its various components such as transmitter and receiver; 2) physical layer properties of visible light communication channel, modulation methods, and MIMO techniques; 3) medium access techniques; 4) system design and programmable platforms; and 5) visible light sensing and application such as indoor localization, gesture recognition, screen-camera communication, and vehicular networking. We also outline important challenges that need to be addressed in order to design high-speed mobile networks using visible light communication.

1,208 citations

Proceedings ArticleDOI
17 Aug 2015
TL;DR: SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems.
Abstract: This paper presents the design and implementation of SpotFi, an accurate indoor localization system that can be deployed on commodity WiFi infrastructure. SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems. SpotFi makes two key technical contributions. First, SpotFi incorporates super-resolution algorithms that can accurately compute the angle of arrival (AoA) of multipath components even when the access point (AP) has only three antennas. Second, it incorporates novel filtering and estimation techniques to identify AoA of direct path between the localization target and AP by assigning values for each path depending on how likely the particular path is the direct path. Our experiments in a multipath rich indoor environment show that SpotFi achieves a median accuracy of 40 cm and is robust to indoor hindrances such as obstacles and multipath.

1,159 citations

01 Jan 2015
TL;DR: This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework and learns what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages.
Abstract: Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications, and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book’s practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include MATLAB computations, and the numerous end-of-chapter exercises include computational assignments. MATLAB/GNU Octave source code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods.

1,102 citations