scispace - formally typeset
Search or ask a question
Author

Domenico Regoli

Bio: Domenico Regoli is an academic researcher from University of Ferrara. The author has contributed to research in topics: Receptor & Substance P. The author has an hindex of 73, co-authored 448 publications receiving 22936 citations. Previous affiliations of Domenico Regoli include Université de Sherbrooke & Institut national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: New advances have contributed to better understanding of the pathophysiological role of the NC/OP4 system, and ultimately will help to identify the therapeutic potential of new OP4 receptor ligands.
Abstract: Nociceptin (NC), alias Orphanin FQ, has been recently identified as the endogenous ligand of the opioid receptor-like 1 receptor (OP4). This new NC/OP4 receptor system belongs to the opioid family and has been characterized pharmacologically with functional and binding assays on native (mouse, rat, guinea-pig) and recombinant (human) receptors, by using specific and selective agonists (NC, NC(1–13)NH2) and a pure and competitive antagonist, [Nphe1]NC(1–13)NH2. The similar order of potency of agonists and affinity values of the antagonist indicate that the same receptor is present in the four species. OP4 is expressed in neurons, where it reduces activation of adenylyl cyclase and Ca2+ channels while activating K+ channels in a manner similar to opioids. In this way, OP4 mediates inhibitory effects in the autonomic nervous system, but its activities in the central nervous system can be either similar or opposite to those of opioids. In vivo experiments have demonstrated that NC modulates a variety of biological functions ranging from nociception to food intake, from memory processes to cardiovascular and renal functions, from spontaneous locomotor activity to gastrointestinal motility, from anxiety to the control of neurotransmitter release at peripheral and central sites. These actions have been demonstrated using NC and various pharmacological tools, as antisense oligonucleotides targeting OP4 or the peptide precursor genes, antibodies against NC, an OP4 receptor selective antagonist and with data obtained from animals in which the receptor or the peptide precursor genes were knocked out. These new advances have contributed to better understanding of the pathophysiological role of the NC/OP4 system, and ultimately will help to identify the therapeutic potential of new OP4 receptor ligands.

476 citations

Journal ArticleDOI
TL;DR: Domenico Regoli and colleagues describe how new selective agonists developed have been successfully used in vitro to characterize the responses of peripheral organs to neurokinins, and in vivo to elucidate possible physiological roles of the neurokinin system.

347 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains, and microglial cells are considered the most susceptible sensors of brain pathology.
Abstract: Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.

2,998 citations

Journal ArticleDOI
TL;DR: The present review focuses on the organisation of descending pathways and their pathophysiological significance, the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls.

2,565 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to provide a comprehensive survey of the current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Abstract: Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.

2,193 citations

Journal Article
TL;DR: This paper focuses on hot pepper, which is eaten on a daily basis by an estimated one-quarter of the world’s population and has potential to be a biological target for regenerative medicine.
Abstract: Natural products afford a window of opportunity to study important biology. If the natural product is used or abused by human beings, finding its biological target(s) is all the more significant. Hot pepper is eaten on a daily basis by an estimated one-quarter of the world’s population and

1,848 citations

Journal ArticleDOI
Peter Holzer1
TL;DR: Etude du mecanisme d'action des neurones sensoriels et des fonctions de leurs effecteurs locaux en reponse a differents stimuli, au niveau des tissus directement en contact avec l'environnement exterieur.

1,685 citations