scispace - formally typeset
Search or ask a question
Author

Domingo Cantero

Other affiliations: University of Manchester
Bio: Domingo Cantero is an academic researcher from University of Cádiz. The author has contributed to research in topics: Anoxic waters & Fermentation. The author has an hindex of 31, co-authored 112 publications receiving 3865 citations. Previous affiliations of Domingo Cantero include University of Manchester.


Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses first on some of the indigenous fermented foods and beverages produced world-wide that have not received the scientific attention they deserve in the last decades.

850 citations

Journal ArticleDOI
TL;DR: The formation kinetics of calcium alginate gel capsules is studied and it is shown that an increase in the concentration ofAlginate gives rise to a reduction in membrane thickness, while an increase of calcium chloride leads to the formation of a thicker film.

287 citations

Journal ArticleDOI
TL;DR: The effects of gelation conditions on capsule characteristics such as thickness, percentage of enzyme leakage and encapsulation efficiency were studied and the optimal conditions for GOD encapsulation obtained.

189 citations

Journal ArticleDOI
TL;DR: Experimental data indicate that SRB show different responses to each metal, which will be taken into account for the subsequent design of a sulphate-reducing bioreactor to reduce levels of heavy metals present in different types of contaminated media.

183 citations

Journal ArticleDOI
TL;DR: The enzymes analyses demonstrated that grape pomace could be competitive with other typical agroindustrial wastes used as substrates in SSF processes.

164 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Various purification techniques for higher recovery of glucose oxidase are described here, and issues of enzyme kinetics, stability studies and characterization are addressed.

976 citations

Journal ArticleDOI
TL;DR: The main polysaccharides currently used in the biomedical and pharmaceutical domains are chitin and its derivative chitosan, hyaluronan, and alginates.
Abstract: This review concerns the applications of some polysaccharides in the domain of biomaterials and bioactive polymers. Natural polysaccharides from different sources have been studied for a long time, and their main properties are summarized in this paper; some of their derivatives obtained by chemical modification are also described. The main polysaccharides currently used in the biomedical and pharmaceutical domains are chitin and its derivative chitosan, hyaluronan and alginates. Alginates are well known for their property of forming a physical gel in the presence of divalent counterions (Ca, Ba, Sr) whereas carrageenans form a thermoreversible gel; these seaweed polysaccharides are mainly used to encapsulate different materials (cells, bacteria, fungi). Other promising systems are the electrostatic complexes formed when an anionic polysaccharide is mixed with a cationic polysaccharide (e.g. alginate/chitosan or hyaluronan/chitosan). An important development of the applications of polysaccharides can be predicted for the next few years in relation to their intrinsic properties such as biocompatibility and biodegradability in the human body for some of them; they are also renewable and have interesting physical properties (film-forming, gelling and thickening properties). In addition, they are easily processed in different forms such as beads, films, capsules and fibres. Copyright © 2007 Society of Chemical Industry

866 citations

Journal ArticleDOI
TL;DR: This review will focus on research work allowing comparison of the specific biological particulars of enzyme, metabolite and/or spore production in SSF and in SmF.
Abstract: Despite the increasing number of publications dealing with solid-state (substrate) fermentation (SSF) it is very difficult to draw general conclusion from the data presented This is due to the lack of proper standardisation that would allow objective comparison with other processes Research work has so far focused on the general applicability of SSF for the production of enzymes, metabolites and spores, in that many different solid substrates (agricultural waste) have been combined with many different fungi and the productivity of each fermentation reported On a gram bench-scale SSF appears to be superior to submerged fermentation technology (SmF) in several aspects However, SSF up-scaling, necessary for use on an industrial scale, raises severe engineering problems due to the build-up of temperature, pH, O2, substrate and moisture gradients Hence, most published reviews also focus on progress towards industrial engineering The role of the physiological and genetic properties of the microorganisms used during growth on solid substrates compared with aqueous solutions has so far been all but neglected, despite the fact that it may be the microbiology that makes SSF advantageous against the SmF biotechnology This review will focus on research work allowing comparison of the specific biological particulars of enzyme, metabolite and/or spore production in SSF and in SmF In these respects, SSF appears to possess several biotechnological advantages, though at present on a laboratory scale only, such as higher fermentation productivity, higher end-concentration of products, higher product stability, lower catabolic repression, cultivation of microorganisms specialized for water-insoluble substrates or mixed cultivation of various fungi, and last but not least, lower demand on sterility due to the low water activity used in SSF

693 citations