scispace - formally typeset
Search or ask a question
Author

Dominic Charles Prime

Bio: Dominic Charles Prime is an academic researcher. The author has contributed to research in topics: Colloidal gold & Electrostatic force microscope. The author has an hindex of 1, co-authored 1 publications receiving 8 citations.

Papers
More filters

Cited by
More filters
Journal Article
TL;DR: The creation and erasure of nanoscale conducting regions at the interface between two insulating oxides, LaAlO3 and SrTiO3 are reported.
Abstract: Experimental and theoretical investigations have demonstrated that a quasi-two-dimensional electron gas (q-2DEG) can form at the interface between two insulators: non-polar SrTiO3 and polar LaTiO3 (ref. 2), LaAlO3 (refs 3-5), KTaO3 (ref. 7) or LaVO3 (ref. 6). Electronically, the situation is analogous to the q-2DEGs formed in semiconductor heterostructures by modulation doping. LaAlO3/SrTiO3 heterostructures have recently been shown to exhibit a hysteretic electric-field-induced metal-insulator quantum phase transition for LaAlO3 thicknesses of 3 unit cells. Here, we report the creation and erasure of nanoscale conducting regions at the interface between two insulating oxides, LaAlO3 and SrTiO3. Using voltages applied by a conducting atomic force microscope (AFM) probe, the buried LaAlO3/SrTiO3 interface is locally and reversibly switched between insulating and conducting states. Persistent field effects are observed using the AFM probe as a gate. Patterning of conducting lines with widths of approximately 3 nm, as well as arrays of conducting islands with densities >10(14) inch(-2), is demonstrated. The patterned structures are stable for >24 h at room temperature.

402 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of a-C:H films as a function of annealing temperature were investigated, with a focus on their electrical and optical properties, and it was shown that these films are stable up to 450°C.
Abstract: In this study, hydrogenated amorphous carbon (a-C:H) films are investigated for electronic applications as an insulating layer. a-C:H films were deposited using Radio Frequency-Plasma Enhanced Chemical Vapour Deposition (RF-PECVD) technique at room temperature. For the first time, the properties of a-C:H films as a function of annealing temperature is investigated, with a focus on their electrical and optical properties. This study shows that a-C:H films are stable up to 450 °C. This investigation will facilitate the use of a-C:H films as an insulating layer where the semiconductor active layers are deposited at higher temperatures (e.g. amorphous silicon deposited around 300 °C for thin film transistor TFTs). In addition to understanding the electrical and optical properties of annealed a-C:H films, we have further explored and studied its suitability in Flash-type memory devices. Various forms of diamond-like carbon are considered to have a high chemical resistance; no extensive data are available in the literature on this subject. The stability of a-C: H thin films with variousreactive chemicals, commonly used in organic/printable electronic devices, is also investigated in this work. The findings may provide opportunities for adoption/integration of a-C:H in hybrid organic-inorganic electronic devices.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of thickness variation on the memory behavior of polymethylmethacrylate (PMMA)-based devices has been investigated, and it has been found that the film thickness determines the type of behavior: ohmic, write-once-read-many-times (WORM) memory with two ON states, WORM memory with a negative differential resistance (NDR) region, and WORMM memory without NDR region.
Abstract: The effect of thickness variation on the memory behavior of the polymethylmethacrylate-(PMMA)-based devices has been investigated. The PMMA film thicknesses have been varied between 5 to 300 nm, and we have found that the film thickness determines the type of behavior: ohmic, write-once-read-many-times (WORM) memory with two ON states, WORM memory with a negative differential resistance (NDR) region, and WORM memory without NDR region. The fact that similar results were obtained using different solvents to dilute PMMA (chlorobenzene, chloroform, and dimethyl sulfoxide), as well as using an other insulating polymer such as polystyrene (PS), leads to the conclusion that the phenomenon of memory depends on the aluminum electrodes, organic film thickness, and the compliance current used during the electroformation whereas the type of organic layer (PMMA or PS) has minor influence. From here, we conclude that the conductivity switching of the insulator organic film is due to the injection of aluminum particles into the film during the first voltage cycle.

10 citations

Dissertation
01 Jul 2019
TL;DR: In this article, the use of different polymer materials such as Polyethylene (PE), Polypropylene (PP), Polyvinyl chloride, (PVC) Polystyrene (PS), polystyrene fiber (PSF) as the substrates for the design and fabrication of different MPAs for communication and sensing applications in millimetre wave (MMW) region.
Abstract: The rapid development in the polymer-based electronic contribute a strong determination for using these materials as substitute to the high-cost materials commonly used as medium substrate in the fabrication of Microstrip Patch Antenna (MPA). Antenna technology can strongly gain from the utilisation of low-cost, flexible, light weight with suitable fabrication techniques. The uniqueness of this work is the use of variety of common but unexplored different polymer materials such as Polyethylene (PE), Polypropylene (PP), Polyvinyl chloride, (PVC) Polystyrene (PS), Polystyrene fibre (PSF) as the substrates for the design and fabrication of different MPAs for communication and sensing applications in millimetre wave (MMW)region. Electrospinning (ES) technique is used to reconstruct PS and produced PSF material of low dielectric constant. A co-solvent vehicle(comprising 50:50 ratio) of Dichloromethane (DCM) and acetone was utilised with processing condition of solution infusion flow-rate of 60μL/min and an applied voltage of 12± kV yielded rigid PSF substrates. The PSF Produced has complex permittivity of 1.36±5% and a loss tangent of 2.4E-04±4.8E-04 which was measured using Spilt-Post Dielectric Resonators (SPDR) technique at National Physics Laboratory, Teddington, London. A diamond-shaped MPAs on RT Duriod material were simulated and fabricated using photo-lithography for different inner lengths to work in the frequencies range from (1-10 GHz). The resonant frequency is approximated as a function of inner length L1 in the form of a polynomial equation. The fabricated diamond-shaped MPA more compact (physical geometry) as compared with a traditional monopole antenna. This MPAs experimentally measured and have a good agreement with the simulated results. The coplanar waveguide (CPW) diamond-shaped MPA working in the MMW region was designed and fabricated with polymer materials as substrates using thermal evaporation technique and the RF measurement was carried out using Vector Network Analyser (VNA). The resonant frequencies of the CPW diamond shaped MPAs for (PE, PP, PVC, PS and PSF) were found to be 67.5 GHz, 72.36 GHz, 62.41 GHz, 63.25 GHz and 80.58 GHz, respectively. The antenna fabricated on PSF were resonating at higher frequency when compared to the other polymers materials. In adding an air-bridge to the CPW diamond-shaped MPA the resonating frequency increased from ≈ 55 GHz to≈ 62 GHz. Three different shaped nano-patch antennas (Diamond shaped, diamond shaped array and T-shaped) have been designed, simulated and fabricated on Silicon substrate with DLC deposition using focused Ion Beam (FIB) technique, these antennas were found to resonate at 1.42 THz with (-19 dB return loss), 2.42 THz with (-14 dB return loss) and 1.3 THz with (-45 dB return loss) respectively.

9 citations

Dissertation
01 May 2013
TL;DR: In this paper, the authors present a table of Table of Table 1 : Table of contents of the table. Table 2 : Table 1.1.2.3.4.
Abstract: ................................................................................................................................ iv Table of

6 citations