scispace - formally typeset
Search or ask a question
Author

Dominic Deslandes

Other affiliations: Valeo, École Normale Supérieure, École Polytechnique  ...read more
Bio: Dominic Deslandes is an academic researcher from École de technologie supérieure. The author has contributed to research in topics: Microstrip & Wideband. The author has an hindex of 21, co-authored 99 publications receiving 5478 citations. Previous affiliations of Dominic Deslandes include Valeo & École Normale Supérieure.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a planar platform is developed in which the microstrip line and rectangular waveguide are fully integrated on the same substrate, and they are interconnected via a simple taper.
Abstract: Usually transitions from microstrip line to rectangular waveguide are made with three-dimensional complex mounting structures. In this paper, a new planar platform is developed in which the microstrip line and rectangular waveguide are fully integrated on the same substrate, and they are interconnected via a simple taper. Our experiments at 28 GHz show that an effective bandwidth of 12% at 20 dB return loss is obtained with an in-band insertion loss better than 0.3 dB. The new transition allows a complete integration of waveguide components on substrate with MICs and MMICs.

1,631 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new concepts that allow for the complete integration of planar circuits and waveguide filters synthesized on a single substrate by means of metallized post (or via-hole) arrays.
Abstract: The integrated planar technique has been considered as a reliable candidate for low-cost mass production of millimeter-wave circuits and systems. This paper presents new concepts that allow for a complete integration of planar circuits and waveguide filters synthesized on a single substrate by means of metallized post (or via-hole) arrays. Analysis of the synthesized integrated waveguide and design criteria are presented for the post pitch and diameter. A filter design method derived from a synthesis technique using inductive post is presented. An experimental three-pole Chebyshev filter having 1-dB insertion loss and return loss better than 17 dB is demonstrated. Integrating such planar and nonplanar circuits on a substrate can significantly reduce size, weight, and cost, and greatly enhance manufacturing repeatability and reliability.

868 citations

Journal ArticleDOI
TL;DR: In this article, a new method of analysis is presented for the determination of complex propagation constants in substrate integrated waveguides (SIWs) by making use of the concept of surface impedance to model the rows of conducting cylinders, and the proposed model is then solved by combining a method of moments and a transverse resonance procedure.
Abstract: A new method of analysis is presented in this paper for the determination of complex propagation constants in substrate integrated waveguides (SIWs) This method makes use of the concept of surface impedance to model the rows of conducting cylinders, and the proposed model is then solved by combining a method of moments and a transverse resonance procedure The proposed method is further applied to extract results in terms of parametric curves and graphs which demonstrate fundamental and interesting wave guidance and leakage properties of this type of periodic waveguide Useful design rules are extracted from this analysis, suggesting that appropriate design parameters and regions should be carefully selected for practical applications In addition, comprehensive review and comparisons with published results are also presented to show the performance and accuracy of the proposed modeling technique Practical measurements of fabricated samples with different levels of loss have confirmed the accuracy of this new method and validity of design rules

765 citations

Proceedings ArticleDOI
17 Nov 2003
TL;DR: Current state-of-the-art of circuit design and implementation platforms based on this new concept are reviewed and discussed in detail and future research and development trends are discussed with reference to low-cost innovative design of millimeter-wave and optoelectronic integrated circuits.
Abstract: A new generation of high-frequency integrated circuits is presented, which is called substrate integrated circuits (SICs). Current state-of-the-art of circuit design and implementation platforms based on this new concept are reviewed and discussed in detail. Different possibilities and numerous advantages of the SICs are shown for microwave, millimeter-wave and optoelectronics applications. Practical examples are illustrated with theoretical and experimental results for substrate integrated waveguide (SIW), substrate integrated slab waveguide (SISW) and substrate integrated nonradiating dielectric (SINRD) guide circuits. Future research and development trends are also discussed with reference to low-cost innovative design of millimeter-wave and optoelectronic integrated circuits.

660 citations

Proceedings ArticleDOI
23 May 2010
TL;DR: In this paper, the microstrip-to-substrate integrated waveguide (SIW) transition is decomposed in two distinct parts, i.e., microstrip taper and SIW step.
Abstract: This paper presents design equations for the microstrip-to-Substrate Integrated Waveguide (SIW) transition. The transition is decomposed in two distinct parts: the microstrip taper and the microstrip-to-SIW step. Analytical equations are used for the microstrip taper. As for the step, the microstrip is modeled by an equivalent transverse electromagnetic (TEM) waveguide. An equation relating the optimum microstrip width to the SIW width is derived using a curve fitting technique. It is shown that when the step is properly sized, it provides a return loss superior to 20 dB. Three design examples are presented using different substrate permittivity and frequency bands between 18 GHz and 75 GHz. An experimental verification is also presented. The presented technique allows to design transitions covering the complete single-mode SIW bandwidth.

286 citations


Cited by
More filters
Journal ArticleDOI
17 Jan 2005
TL;DR: In this article, a numerical multimode calibration procedure is proposed and developed with a commercial software package on the basis of a full-wave finite-element method for the accurate extraction of complex propagation constants of the SIW structure.
Abstract: The substrate integrated waveguide (SIW) technique makes it possible that a complete circuit including planar circuitry, transitions, and rectangular waveguides are fabricated in planar form using a standard printed circuit board or other planar processing techniques. In this paper, guided wave and modes characteristics of such an SIW periodic structure are studied in detail for the first time. A numerical multimode calibration procedure is proposed and developed with a commercial software package on the basis of a full-wave finite-element method for the accurate extraction of complex propagation constants of the SIW structure. Two different lengths of the SIW are numerically simulated under multimode excitation. By means of our proposed technique, the complex propagation constant of each SIW mode can accurately be extracted and the electromagnetic bandstop phenomena of periodic structures are also investigated. Experiments are made to validate our proposed technique. Simple design rules are provided and discussed.

1,356 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components, as well as their application in the development of circuits and components operating in the microwave and millimetre wave region.
Abstract: Substrate-integrated waveguide (SIW) technology represents an emerging and very promising candidate for the development of circuits and components operating in the microwave and millimetre-wave region. SIW structures are generally fabricated by using two rows of conducting cylinders or slots embedded in a dielectric substrate that connects two parallel metal plates, and permit the implementation of classical rectangular waveguide components in planar form, along with printed circuitry, active devices and antennas. This study aims to provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components.

1,129 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new concepts that allow for the complete integration of planar circuits and waveguide filters synthesized on a single substrate by means of metallized post (or via-hole) arrays.
Abstract: The integrated planar technique has been considered as a reliable candidate for low-cost mass production of millimeter-wave circuits and systems. This paper presents new concepts that allow for a complete integration of planar circuits and waveguide filters synthesized on a single substrate by means of metallized post (or via-hole) arrays. Analysis of the synthesized integrated waveguide and design criteria are presented for the post pitch and diameter. A filter design method derived from a synthesis technique using inductive post is presented. An experimental three-pole Chebyshev filter having 1-dB insertion loss and return loss better than 17 dB is demonstrated. Integrating such planar and nonplanar circuits on a substrate can significantly reduce size, weight, and cost, and greatly enhance manufacturing repeatability and reliability.

868 citations

Journal ArticleDOI
TL;DR: In this paper, the dispersion properties of the substrate integrated rectangular waveguide (SIRW) were rigorously obtained using the BI-RME method combined with the Floquet's theorem.
Abstract: Dispersion properties of the substrate integrated rectangular waveguide (SIRW) are rigorously obtained using the BI-RME method combined with the Floquet's theorem. Our analysis shows that the SIRW basically has the same guided-wave characteristics as the conventional rectangular waveguide. Empirical equations are derived from the calculated dispersion curves in order to estimate the cutoff frequency of the first two dominant modes of the SIRW To validate the analysis results, an SIRW guide was designed and measured. Very good agreements between the experimental and theoretical results were obtained.

776 citations

Journal ArticleDOI
TL;DR: In this article, a new method of analysis is presented for the determination of complex propagation constants in substrate integrated waveguides (SIWs) by making use of the concept of surface impedance to model the rows of conducting cylinders, and the proposed model is then solved by combining a method of moments and a transverse resonance procedure.
Abstract: A new method of analysis is presented in this paper for the determination of complex propagation constants in substrate integrated waveguides (SIWs) This method makes use of the concept of surface impedance to model the rows of conducting cylinders, and the proposed model is then solved by combining a method of moments and a transverse resonance procedure The proposed method is further applied to extract results in terms of parametric curves and graphs which demonstrate fundamental and interesting wave guidance and leakage properties of this type of periodic waveguide Useful design rules are extracted from this analysis, suggesting that appropriate design parameters and regions should be carefully selected for practical applications In addition, comprehensive review and comparisons with published results are also presented to show the performance and accuracy of the proposed modeling technique Practical measurements of fabricated samples with different levels of loss have confirmed the accuracy of this new method and validity of design rules

765 citations