scispace - formally typeset
Search or ask a question
Author

Dominic F. Lee

Other affiliations: University of Tennessee
Bio: Dominic F. Lee is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Pulsed laser deposition & Texture (crystalline). The author has an hindex of 38, co-authored 114 publications receiving 6729 citations. Previous affiliations of Dominic F. Lee include University of Tennessee.


Papers
More filters
Journal ArticleDOI
TL;DR: Deposited conductors made using this technique offer a potential route for the fabrication of long lengths of high‐Jc wire capable of carrying high currents in high magnetic fields and at elevated temperatures.
Abstract: A method to obtain long lengths of flexible, biaxially oriented substrates with smooth, chemically compatible surfaces for epitaxial growth of high‐temperature superconductors is reported. The technique uses well established, industrially scalable, thermomechanical processes to impart a strong biaxial texture to a base metal. This is followed by vapor deposition of epitaxial buffer layers (metal and/or ceramic) to yield chemically compatible surfaces. Epitaxial YBa2Cu3Ox films grown on such substrates have critical current densities exceeding 105 A/cm2 at 77 K in zero field and have field dependencies similar to epitaxial films on single crystal ceramic substrates. Deposited conductors made using this technique offer a potential route for the fabrication of long lengths of high‐Jc wire capable of carrying high currents in high magnetic fields and at elevated temperatures.

902 citations

Journal Article
01 Jan 1996-Scopus
TL;DR: In this article, a method to obtain long lengths of flexible, biaxially oriented substrates with smooth, chemically compatible surfaces for epitaxial growth of high-temperature superconductors is reported.
Abstract: A method to obtain long lengths of flexible, biaxially oriented substrates with smooth, chemically compatible surfaces for epitaxial growth of high‐temperature superconductors is reported. The technique uses well established, industrially scalable, thermomechanical processes to impart a strong biaxial texture to a base metal. This is followed by vapor deposition of epitaxial buffer layers (metal and/or ceramic) to yield chemically compatible surfaces. Epitaxial YBa2Cu3Ox films grown on such substrates have critical current densities exceeding 105 A/cm2 at 77 K in zero field and have field dependencies similar to epitaxial films on single crystal ceramic substrates. Deposited conductors made using this technique offer a potential route for the fabrication of long lengths of high‐Jc wire capable of carrying high currents in high magnetic fields and at elevated temperatures.

854 citations

Journal ArticleDOI
01 Nov 1996-Science
TL;DR: In this article, an inplane aligned, c axis-oriented YBa2Cu3O7 (YBCO) films with superconducting critical current densities Jc as high as 700,000 amperes per square centimeter at 77 kelvin have been grown on thermomechanically rolled-textured nickel (001) tapes by pulsed-laser deposition.
Abstract: In-plane—aligned, c axis—oriented YBa2Cu3O7 (YBCO) films with superconducting critical current densities Jc as high as 700,000 amperes per square centimeter at 77 kelvin have been grown on thermomechanically rolled-textured nickel (001) tapes by pulsed-laser deposition. Epitaxial growth of oxide buffer layers directly on biaxially textured nickel, formed by recrystallization of cold-rolled pure nickel, made possible the growth of YBCO films 1.5 micrometers thick with superconducting properties that are comparable to those observed for epitaxial films on single-crystal oxide substrates. This result represents a viable approach for the production of long superconducting tapes for high-current, high-field applications at 77 kelvin.

660 citations

Journal ArticleDOI
31 Mar 2006-Science
TL;DR: Benefits of the critical current in self-field as well as excellent retention of this current in high applied magnetic fields were achieved in the thick films via incorporation of a periodic array of extended columnar defects, composed of self-aligned nanodots of nonsuperconducting material extending through the entire thickness of the film.
Abstract: We demonstrated short segments of a superconducting wire that meets or exceeds performance requirements for many large-scale applications of high-temperature superconducting materials, especially those requiring a high supercurrent and/or a high engineering critical current density in applied magnetic fields. The performance requirements for these varied applications were met in 3-micrometer-thick YBa 2 Cu 3 O 7-δ films epitaxially grown via pulsed laser ablation on rolling assisted biaxially textured substrates. Enhancements of the critical current in self-field as well as excellent retention of this current in high applied magnetic fields were achieved in the thick films via incorporation of a periodic array of extended columnar defects, composed of self-aligned nanodots of nonsuperconducting material extending through the entire thickness of the film. These columnar defects are highly effective in pinning the superconducting vortices or flux lines, thereby resulting in the substantially enhanced performance of this wire.

413 citations

Journal ArticleDOI
TL;DR: In this article, two buffer layer architectures were developed on rolled-Ni substrates using an electron beam evaporation technique, one consisting of an epitaxial laminate of CeO 2 /Pd/Ni and the other consisting of a YSZ/CeO 2/Ni.
Abstract: This paper describes the development of two buffer layer architectures on rolled-Ni substrates using an electron beam evaporation technique. The first buffer layer architecture consists of an epitaxial laminate of CeO 2 /Pd/Ni. The second alternative buffer layer consistes of an epitaxial laminate of YSZ/CeO 2 /Ni. The cube (100) texture in the Ni was produced by cold-rolling followed by recrystallization. The CeO 2 films were grown epitaxially on both Pd-buffered and textured-Ni substrates. The YSZ films were grown epitaxially on CeO 2 -buffered Ni substrates. The crystallographic orientation of the Pd, CeO 2 , and YSZ films were all (100). We also studied the effect of CeO 2 layer thickness and crack formation on textured-Ni substrates. The layer thickness was found to be critical. For some thickness, cracks formed in the CeO 2 layer. The presence of YSZ layers on the CeO 2 layers seem alleviate the cracks that are formed underneath. Our SEM studies showed that both CeO 2 (3–10 nm thick underlayer) and YSZ layers were smooth and continuous.

190 citations


Cited by
More filters
01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven but widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.
Abstract: Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds

1,201 citations

01 Jan 2007
Abstract: Fogging occurs when moisture condensation takes the form of accumulated droplets with diameters larger than 190 nm or half of the shortest wavelength (380 nm) of visible light. This problem may be effectively addressed by changing the affinity of a material’s surface for water, which can be accomplished via two approaches: i) the superhydrophilic approach, with a water contact angle (CA) less than 5°, and ii) the superhydrophobic approach, with a water CA greater than 150°, and extremely low CA hysteresis. To date, all techniques reported belong to the former category, as they are intended for applications in optical transparent coatings. A well-known example is the use of photocatalytic TiO2 nanoparticle coatings that become superhydrophilic under UV irradiation. Very recently, a capillary effect was skillfully adopted to achieve superhydrophilic properties by constructing 3D nanoporous structures from layer-by-layer assembled nanoparticles. The key to these two “wet”-style antifogging strategies is for micrometer-sized fog drops to rapidly spread into a uniform thin film, which can prevent light scattering and reflection from nucleated droplets. Optical transparency is not an intrinsic property of antifogging coatings even though recently developed antifogging coatings are almost transparent, and the transparency could be achieved by further tuning the nanoparticle size and film thickness. To our knowledge, the antifogging coatings may also be applied to many fields that do not require optical transparency, including, for example, paints for inhibiting swelling and peeling issues and metal surfaces for preventing corrosion. These types of issues, which are caused by adsorption of moisture, are hard to solve by the superhydrophilic approach because of its inherently “wet” nature. Thus, a “dry”-style antifogging strategy, which consists of a novel superhydrophobic technique that can prevent moisture or microscale fog drops from nucleating on a surface, is desired. Recent bionic researches have revealed that the self-cleaning ability of lotus leaves and the striking ability of a water-strider’s legs to walk on water can be attributed to the ideal superhydrophobicity of their surfaces, induced by special microand nanostructures. To date, the biomimetic fabrication of superhydrophobic microand/or nanostructures has attracted considerable interest, and these types of materials can be used for such applications as self-cleaning coatings and stain-resistant textiles. Although a superhydrophobic technique inspired by lotus leaves is expected to be able to solve such fogging problems because the water droplets can not remain on the surface, there are no reports of such antifogging coatings. Very recently, researchers from General Motors have reported that the surfaces of lotus leaves become wet with moisture because the size of the fog drops are at the microscale—so small that they can be easily trapped in the interspaces among micropapillae. Thus, lotuslike surface microstructures are unsuitable for superhydrophobic antifogging coatings, and a new inspiration from nature is desired for solving this problem. In this communication, we report a novel, biological, superhydrophobic antifogging strategy. It was found that the compound eyes of the mosquito C. pipiens possess ideal superhydrophobic properties that provide an effective protective mechanism for maintaining clear vision in a humid habitat. Our research indicates that this unique property is attributed to the smart design of elaborate microand nanostructures: hexagonally non-close-packed (ncp) nipples at the nanoscale prevent microscale fog drops from condensing on the ommatidia surface, and hexagonally close-packed (hcp) ommatidia at the microscale could efficiently prevent fog drops from being trapped in the voids between the ommatidia. We also fabricated artificial compound eyes by using soft lithography and investigated the effects of microand nanostructures on the surface hydrophobicity. These findings could be used to develop novel superhydrophobic antifogging coatings in the near future. It is known that mosquitoes possess excellent vision, which they exploit to locate various resources such as mates, hosts, and resting sites in a watery and dim habitat. To better understand such remarkable abilities, we first investigated the interaction between moisture and the eye surface. An ultrasonic humidifier was used to regulate the relative humidity of the atmosphere and mimic a mist composed of numerous tiny water droplets with diameters less than 10 lm. As the fog was C O M M U N IC A IO N

756 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the dynamic field of crystalline silicon photovoltaics from a device-engineering perspective and give an up-to-date summary of promising recent pathways for further efficiency improvements and cost reduction employing novel carrierselective passivating contact schemes, as well as tandem multi-junction architectures, in particular those that combine silicon absorbers with organic-inorganic perovskite materials.
Abstract: With a global market share of about 90%, crystalline silicon is by far the most important photovoltaic technology today. This article reviews the dynamic field of crystalline silicon photovoltaics from a device-engineering perspective. First, it discusses key factors responsible for the success of the classic dopant-diffused silicon homojunction solar cell. Next it analyzes two archetypal high-efficiency device architectures – the interdigitated back-contact silicon cell and the silicon heterojunction cell – both of which have demonstrated power conversion efficiencies greater than 25%. Last, it gives an up-to-date summary of promising recent pathways for further efficiency improvements and cost reduction employing novel carrier-selective passivating contact schemes, as well as tandem multi-junction architectures, in particular those that combine silicon absorbers with organic–inorganic perovskite materials.

751 citations

Journal ArticleDOI
19 Aug 2004-Nature
TL;DR: A method for achieving a dispersion of ∼8-nm-sized nanoparticles in YBCO with a high number density, which increases the critical current by a factor of two to three for high magnetic fields.
Abstract: Following the discovery of type-II high-temperature superconductors in 1986 (refs 1, 2), work has proceeded to develop these materials for power applications. One of the problems, however, has been that magnetic flux is not completely expelled, but rather is contained within magnetic fluxons, whose motion prevents larger supercurrents. It is known that the critical current of these materials can be enhanced by incorporating a high density of extended defects to act as pinning centres for the fluxons. YBa2Cu3O7 (YBCO or 123) is the most promising material for such applications at higher temperatures (liquid nitrogen). Pinning is optimized when the size of the defects approaches the superconducting coherence length ( approximately 2-4 nm for YBCO at temperatures < or =77 K) and when the areal number density of defects is of the order of (H/2) x 10(11) cm(-2), where H is the applied magnetic field in tesla. Such a high density has been difficult to achieve by material-processing methods that maintain a nanosize defect, except through irradiation. Here we report a method for achieving a dispersion of approximately 8-nm-sized nanoparticles in YBCO with a high number density, which increases the critical current (at 77 K) by a factor of two to three for high magnetic fields.

694 citations