scispace - formally typeset
Search or ask a question
Author

Dominik A. Riechers

Bio: Dominik A. Riechers is an academic researcher from Cornell University. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 64, co-authored 226 publications receiving 12261 citations. Previous affiliations of Dominik A. Riechers include Max Planck Society & California Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present evidence for very high gas fractions and extended molecular gas reservoirs in normal, near-infrared selected (BzK) galaxies at z~1.5, based on multi-configuration CO[2-1] observations obtained at the IRAM PdBI.
Abstract: We present evidence for very high gas fractions and extended molecular gas reservoirs in normal, near-infrared selected (BzK) galaxies at z~1.5, based on multi-configuration CO[2-1] observations obtained at the IRAM PdBI. Six of the six galaxies observed were securely detected. High resolution observations resolve the CO emission in four of them, implying sizes of order of 6-11 kpc and suggesting the presence of rotation. The UV morphologies are consistent with clumpy, unstable disks, and the UV sizes are consistent with the CO sizes. The star formation efficiencies are homogeneously low and similar to local spirals - the resulting gas depletion times are ~0.5 Gyr, much higher than what is seen in high-z submm galaxies and quasars. The CO luminosities can be predicted to within 0.15 dex from the star formation rates and stellar masses, implying a tight correlation of the gas mass with these quantities. We use dynamical models of clumpy disk galaxies to derive dynamical masses. These models are able to reproduce the peculiar spectral line shapes of the CO emission. After accounting for the stellar and dark matter masses we derive gas masses of 0.4-1.2x10^11 Msun. The conversion factor is very high: alpha_CO=3.6+-0.8, consistent with the Galaxy but four times higher than that of local ultra-luminous IR galaxies. The gas accounts for an impressive 50-65% of the baryons within the galaxies' half light radii. We are witnessing truly gas-dominated galaxies at z~1.5, a finding that explains the high specific SFRs observed for z>1 galaxies. The BzK galaxies can be viewed as scaled-up versions of local disk galaxies, with low efficiency star formation taking place inside extended, low excitation gas disks. They are markedly different than local ULIRGs and high-z submm galaxies, which have more excited and compact gas.

997 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present evidence that bona fide disks and starburst systems occupy distinct regions in the gas mass versus star formation rate (SFR) plane, both for the integrated quantities and for the respective surface densities.
Abstract: We present evidence that bona fide disks and starburst systems occupy distinct regions in the gas mass versus star formation rate (SFR) plane, both for the integrated quantities and for the respective surface densities This result is based on carbon monoxide (CO) observations of galaxy populations at low and high redshifts, and on the current consensus for the CO luminosity to gas mass conversion factors The data suggest the existence of two different SF regimes: a long-lasting mode for disks and a more rapid mode for starbursts, the latter probably occurring during major mergers or in dense nuclear SF regions Both modes are observable over a large range of SFRs The detection of CO emission from distant near-IR selected galaxies reveals such bimodal behavior for the first time, as they allow us to probe gas in disk galaxies with much higher SFRs than are seen locally The different regimes can potentially be interpreted as the effect of a top-heavy initial mass function in starbursts However, we favor a different physical origin related to the fraction of molecular gas in dense clouds The IR luminosity to gas mass ratio (ie, the SF efficiency) appears to be inversely proportional to the dynamical (rotation) timescale Only when accounting for the dynamical timescale, a universal SF law is obtained, suggesting a direct link between global galaxy properties and the local SFR

828 citations

Journal ArticleDOI
TL;DR: In this paper, the Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C Pi] 158 mu m fine structure line and dust continuum emission from the host galaxies of five redshift 6 quasars were carried out in the extended array at 0'' 7 resolution.
Abstract: We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C Pi] 158 mu m fine structure line and dust continuum emission from the host galaxies of five redshift 6 quasars. We also report complementary observations of 250 GHz dust continuum and CO (6-5) line emission from the z = 6.00 quasar SDSS J231038.88+185519.7 using the IRAM facilities. The ALMA observations were carried out in the extended array at 0.'' 7 resolution. We have detected the line and dust continuum in all five objects. The derived [C Pi] line luminosities are 1.6 x 10(9) to 8.7 x 10(9) L-circle dot and the [C Pi]-to-FIR luminosity ratios are 2.9-5.1 x 10(-4), which is comparable to the values found in other high-redshift quasar-starburst systems and local ultra-luminous infrared galaxies. The sources are marginally resolved and the intrinsic source sizes (major axis FWHM) are constrained to be 0.'' 3-0.'' 6 (i.e., 1.7-3.5 kpc) for the [C Pi] line emission and 0.'' 2-0.'' 4 (i.e., 1.2-2.3 kpc) for the continuum. These measurements indicate that there is vigorous star formation over the central few kpc in the quasar host galaxies. The ALMA observations also constrain the dynamical properties of the star-forming gas in the nuclear region. The intensity-weighted velocity maps of three sources show clear velocity gradients. Such velocity gradients are consistent with a rotating, gravitationally bound gas component, although they are not uniquely interpreted as such. Under the simplifying assumption of rotation, the implied dynamical masses within the [C Pi]-emitting regions are of order 10(10)-10(11) M-circle dot. Given these estimates, the mass ratios between the supermassive black holes and the spheroidal bulge are an order of magnitude higher than the mean value found in local spheroidal galaxies, which is in agreement with results from previous CO observations of high redshift quasars.

415 citations

Journal ArticleDOI
10 Feb 2011-Nature
TL;DR: A protocluster region that dates from 1 Gyr (z = 5.3) after the Big Bang is reported, which contains a luminous quasar as well as a system rich in molecular gas.
Abstract: Massive clusters of galaxies have been found that date from as early as 3.9 billion years (3.9 Gyr; z = 1.62) after the Big Bang, containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter model predict that these systems should descend from ‘protoclusters’—early overdensities of massive galaxies that merge hierarchically to form a cluster. These protocluster regions themselves are built up hierarchically and so are expected to contain extremely massive galaxies that can be observed as luminous quasars and starbursts. Observational evidence for this picture, however, is sparse because high-redshift protoclusters are rare and difficult to observe. Here we report a protocluster region that dates from 1 Gyr (z = 5.3) after the Big Bang. This cluster of massive galaxies extends over more than 13 megaparsecs and contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of more than 4 × 10^(11) solar masses of dark and luminous matter in this region, consistent with that expected from cosmological simulations for the earliest galaxy clusters.

312 citations

Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: A spatially resolved image of [C ii] emission of the host galaxy of J114816.64+525150.3 that demonstrates that its star-forming gas is distributed over a radius of about 750 pc around the centre, comparable to the peak in Arp 220.
Abstract: The host galaxy of the quasar SDSS J114816.64+1525150.3 (at redshift z=6.42, when the Universe was less than a billion years old) has an infrared luminosity of 2.2 x 10^(13) times that of the Sun, presumably significantly powered by a massive burst of star formation. In local examples of extremely luminous galaxies, such as Arp 220, the burst of star formation is concentrated in a relatively small central region of <100 pc radius. It is not known on which scales stars are forming in active galaxies in the early Universe, at a time when they are probably undergoing their initial burst of star formation. We do know that at some early time, structures comparable to the spheroidal bulge of the Milky Way must have formed. Here we report a spatially resolved image of [C II] emission of the host galaxy of J114816.64+1525150.3 that demonstrates that its star-forming gas is distributed over a radius of about 750 pc around the centre. The surface density of the star formation rate averaged over this region is ~1,000M⊙[year^(-1) kpc^(-2). This surface density is comparable to the peak in Arp 220, although about two orders of magnitude larger in area. This vigorous star-forming event is likely to give rise to a massive spheroidal component in this system.

281 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The emcee algorithm as mentioned in this paper is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010).
Abstract: We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the astrophysics literature. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and it has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to ~N2 for a traditional algorithm in an N-dimensional parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

8,805 citations

Journal ArticleDOI
TL;DR: This document introduces a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010).
Abstract: We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the astrophysics literature. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and it has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to $\sim N^2$ for a traditional algorithm in an N-dimensional parameter space. In this document, we describe the algorithm and the details of our implementation and API. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort. The code is available online at this http URL under the MIT License.

5,293 citations

Journal ArticleDOI
TL;DR: Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging.
Abstract: The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

3,394 citations

Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations