scispace - formally typeset
Search or ask a question
Author

Dominique Bonnet

Bio: Dominique Bonnet is an academic researcher from University of Toronto. The author has contributed to research in topics: Haematopoiesis & Stem cell. The author has an hindex of 5, co-authored 5 publications receiving 7149 citations. Previous affiliations of Dominique Bonnet include London Research Institute & Coriell Institute For Medical Research.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the cell capable of initiating human AML in non-obese diabetic mice with severe combined immunodeficiency disease (NOD/SCID mice) — termed the SCID leukemia-initiating cell, or SL-IC — possesses the differentiate and proliferative capacities and the potential for self-renewal expected of a leukemic stem cell.
Abstract: On the subject of acute myeloid leukemia (AML), there is little consensus about the target cell within the hematopoietic stem cell hierarchy that is susceptible to leukemic transformation, or about the mechanism that underlies the phenotypic, genotypic and clinical heterogeneity. Here we demonstrate that the cell capable of initiating human AML in non-obese diabetic mice with severe combined immunodeficiency disease (NOD/SCID mice) - termed the SCID leukemia-initiating cell, or SL-IC - possesses the differentiative and proliferative capacities and the potential for self-renewal expected of a leukemic stem cell. The SL-ICs from all subtypes of AML analyzed, regardless of the heterogeneity in maturation characteristics of the leukemic blasts, were exclusively CD34++ CD38-, similar to the cell-surface phenotype of normal SCID-repopulating cells, suggesting that normal primitive cells, rather than committed progenitor cells, are the target for leukemic transformation. The SL-ICs were able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone is organized as a hierarchy.

6,709 citations

Journal ArticleDOI
TL;DR: A newly discovered human repopulating cell is identified that initiates multilineage hematopoiesis in NOD/SCID mice and demonstrates complexity of the organization of the human stem- cell compartment and has important implications for clinical applications involving stem-cell transplantation.
Abstract: The detection of primitive hematopoietic cells based on repopulation of immune-deficient mice is a powerful tool to characterize the human stem-cell compartment. Here, we identify a newly discovered human repopulating cell, distinct from previously identified repopulating cells, that initiates multilineage hematopoiesis in NOD/SCID mice. We call such cells CD34neg-SCID repopulating cells, or CD34neg-SRC. CD34neg-SRC are restricted to a Lin-CD34-CD38- population without detectable surface markers for multiple lineages and CD38 or those previously associated with stem cells (HLA-DR, Thy-1 and CD34). In contrast to CD34+ subfractions, Lin-CD34-CD38- cells have low clonogenicity in short-and long-term in vitro assays. The number of CD34neg-SRC increased in short-term suspension cultures in conditions that did not maintain SRC derived from CD34+ populations, providing independent biological evidence of their distinctiveness. The identification of this newly discovered cell demonstrates complexity of the organization of the human stem-cell compartment and has important implications for clinical applications involving stem-cell transplantation.

652 citations

Journal ArticleDOI
TL;DR: It is suggested that the engraftment process requires pluripotent stem cells plus accessory cells or cytokine treatment which act early after transplantation, and the NOD/SCID xenotransplant system provides the means to further clarify the processes underlying human stem cell engraftments.
Abstract: Little is known about the cell types or mechanisms that underlie the engraftment process. Here, we have examined parameters affecting the engraftment of purified human Lin-CD34+CD38- normal and AML cells transplanted at limiting doses into NOD/SCID recipients. Mice transplanted with 500 to 1000 Lin-CD34+CD38- cord blood (CB) or AML cells required the co-transplantation of accessory cells (ACs) or short-term in vivo cytokine treatment for engraftment, whereas transplantation of higher doses (>5000 Lin-CD34+CD38- cells) did not show these requirements suggesting that ACs are effective for both normal and leukemic stem cell engraftment in this model. Mature Lin+CD34- and primitive Lin-CD34+CD38+ cells were capable of acting as ACs even though no repopulating cells are present. Cytokine treatment of NOD/SCID mice could partially replace the requirement for co-transplantation of AC. Furthermore, no difference was seen between the percentage of engrafted mice treated with cytokines for only the first 10 days after transplant compared to those receiving cytokines for the entire time of repopulation. Surprisingly, no engraftment was detected in mice when cytokine treatment was delayed until 10 days posttransplant. Together, these studies suggest that the engraftment process requires pluripotent stem cells plus accessory cells or cytokine treatment which act early after transplantation. The NOD/SCID xenotransplant system provides the means to further clarify the processes underlying human stem cell engraftment.

139 citations

Journal ArticleDOI
15 Sep 1998-Blood
TL;DR: Examination of the effect of long-term in vivo treatment with various combinations of human cytokines on the developmental program of the SCID-repopulating cell shows that the lineage development of the human graft in NOD/SCID mice can be modulated by administration ofhuman cytokines, providing a valuable tool to evaluate the in vivo action of humanocytes on human repopulating cells.

23 citations

PatentDOI
TL;DR: In this paper, human hemotopoietic stem cells are characterized as CD34-Lin and CD34 -CD38-Lin, and methods of isolating and using such cells in compositions and in methods for the reconstitution of a deficient or missing cell population.
Abstract: The present invention relates to human hemotopoietic stem cells characterized as CD34-Lin- and CD34-CD38-Lin- and to methods of isolating and using such cells in compositions and in methods for the reconstitution of a deficient or missing cell population. The present invention also provides a population of human hematopoietic stem cells that can be isolated and genetically altered for introduction in a human patient, to correct various genetic disorders and cultured and further differentiated in vitro to provide a new population of cells.

22 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
TL;DR: The ability to prospectively identify tumorigenic cancer cells will facilitate the elucidation of pathways that regulate their growth and survival and strategies designed to target this population may lead to more effective therapies.
Abstract: Breast cancer is the most common malignancy in United States women, accounting for >40,000 deaths each year. These breast tumors are comprised of phenotypically diverse populations of breast cancer cells. Using a model in which human breast cancer cells were grown in immunocompromised mice, we found that only a minority of breast cancer cells had the ability to form new tumors. We were able to distinguish the tumorigenic (tumor initiating) from the nontumorigenic cancer cells based on cell surface marker expression. We prospectively identified and isolated the tumorigenic cells as CD44+CD24−/lowLineage− in eight of nine patients. As few as 100 cells with this phenotype were able to form tumors in mice, whereas tens of thousands of cells with alternate phenotypes failed to form tumors. The tumorigenic subpopulation could be serially passaged: each time cells within this population generated new tumors containing additional CD44+CD24−/lowLineage− tumorigenic cells as well as the phenotypically diverse mixed populations of nontumorigenic cells present in the initial tumor. The ability to prospectively identify tumorigenic cancer cells will facilitate the elucidation of pathways that regulate their growth and survival. Furthermore, because these cells drive tumor development, strategies designed to target this population may lead to more effective therapies.

10,058 citations

Journal ArticleDOI
01 Nov 2001-Nature
TL;DR: Stem cell biology has come of age: Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine.
Abstract: Stem cell biology has come of age. Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine. Perhaps the most important and useful property of stem cells is that of self-renewal. Through this property, striking parallels can be found between stem cells and cancer cells: tumours may often originate from the transformation of normal stem cells, similar signalling pathways may regulate self-renewal in stem cells and cancer cells, and cancer cells may include 'cancer stem cells' - rare cells with indefinite potential for self-renewal that drive tumorigenesis.

8,999 citations

Journal ArticleDOI
16 May 2008-Cell
TL;DR: It is reported that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers, and it is shown that those cells have an increased ability to form mammospheres, a property associated with mammARY epithelial stem cells.

8,052 citations

Journal ArticleDOI
18 Nov 2004-Nature
TL;DR: The development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo gives strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.
Abstract: The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem cell properties in vitro. However, the true measures of CSCs are their capacity for self renewal and exact recapitulation of the original tumour. Here we report the development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo. Only the CD133+ brain tumour fraction contains cells that are capable of tumour initiation in NOD-SCID (non-obese diabetic, severe combined immunodeficient) mouse brains. Injection of as few as 100 CD133+ cells produced a tumour that could be serially transplanted and was a phenocopy of the patient's original tumour, whereas injection of 10(5) CD133- cells engrafted but did not cause a tumour. Thus, the identification of brain tumour initiating cells provides insights into human brain tumour pathogenesis, giving strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.

7,120 citations