scispace - formally typeset
Search or ask a question
Author

Dominique Langevin

Other affiliations: University of Paris-Sud
Bio: Dominique Langevin is an academic researcher from University of Paris. The author has contributed to research in topics: Surface tension & Polyelectrolyte. The author has an hindex of 20, co-authored 37 publications receiving 1286 citations. Previous affiliations of Dominique Langevin include University of Paris-Sud.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the surface dilational elastic moduli of bubbles immersed in water and soap bubbles in air were measured using either image analysis or pressure measurements, and it was possible with this method to measure directly the Gibbs elasticity.
Abstract: We have measured the surface dilational elastic moduli of bubbles immersed in water and soap bubbles in air. The short time response was obtained by submitting the bubbles to a rapid expansion after which the surface tension evolution was monitored, using either image analysis or pressure measurements. It was possible with this method to measure directly the Gibbs elasticity. The longer time response was obtained by submitting the bubbles to low frequency oscillations. Experiments were performed with solutions of non-ionic surfactants, C12E6, C12G2, their 1:1 mixture, Pluronic F-68 and 127 and the surface elastic moduli were compared with the stability of foams made with these surfactants. The foams evolve with time, first by Ostwald ripening, controlled by the low frequency elasticity, and then by bubbles coalescence, controlled by the high frequency elasticity.

218 citations

Journal ArticleDOI
TL;DR: In this paper, the roles of bubble size, surface and bulk rheology and liquid fraction in free-drainage experiments were investigated. And the results showed that changing these foam parameters can induce transitions between different drainage regimes.
Abstract: We report new results on drainage and coarsening of aqueous foams. We show that these two effects can strongly interfere, enhancing the drainage velocity. Without coarsening, we have performed free-drainage experiments, in which local drainage rates are measured by electrical conductivity and by light scattering techniques. We have investigated the roles of the bubble size, of the surface and bulk rheology and of the liquid fraction. The results show that changing these foam parameters can induce transitions between different drainage regimes. The results are analysed in terms of two dimensionless numbers describing the balance between surface and bulk dissipation.

154 citations

Journal ArticleDOI
TL;DR: A surface shear rheology study of different lipid monolayers that model distinct biologically relevant situations that evidence a large variety of mechanical behavior under lateral shear flow.
Abstract: The concept of membrane fluidity usually refers to a high molecular mobility inside the lipid bilayer which enables lateral diffusion of embedded proteins. Fluids have the ability to flow under an applied shear stress whereas solids resist shear deformations. Biological membranes require both properties for their function: high lateral fluidity and structural rigidity. Consequently, an adequate account must include, in addition to viscosity, the possibility for a nonzero shear modulus. This knowledge is still lacking as measurements of membrane shear properties have remained incomplete so far. In the present contribution we report a surface shear rheology study of different lipid monolayers that model distinct biologically relevant situations. The results evidence a large variety of mechanical behavior under lateral shear flow.

150 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the properties of monodisperse liquid and solid foams is presented, comparing them to the more standard polydisperse foams, and different properties of the two types of foams are compared.
Abstract: Most major recent advances in the physics of monodisperse foams are centred around the ability to generate them with excellent control of bubble sizes down to a few micrometers thanks to the development of appropriate micro- and millifluidic techniques. As a natural consequence, monodisperse liquid and solid foams are playing an increasingly important role in fundamental research and in the development of industrial applications. In this review, we will address the different properties of monodisperse foams, comparing them to the more standard polydisperse foams.

108 citations

Journal ArticleDOI
TL;DR: In this paper, the steady flows of 3D aqueous foams were studied by using simultaneously rheometry and a multiple light scattering technique, diffusing wave spectroscopy (DWS), and it was shown that flow regimes can either be slip or shear dominated.
Abstract: By using simultaneously rheometry and a multiple light scattering technique, diffusing wave spectroscopy (DWS), we have studied the steady flows of three-dimensional aqueous foams. A number of parameters—the surfactants, the liquid volume fraction, and the roughness of the rheometer surfaces—are widely varied in order to determine which quantities have an impact on the macroscopic flow behaviors. By comparing to previous theoretical and experimental results, we show that flow regimes can either be slip or shear dominated. Two opposite slip regimes are identified; the transition from one to the other is obtained either by changing the surfactant or the liquid fraction, and we quantitately discuss which regime is selected for any given foam properties. Similarly, different shear regimes are also found, and we discuss the link between the macroscopic rheometry measurements, the nature of the flow, and the interfacial microscopic properties. Despite the occurrence of slip, we show how we can recover the actua...

64 citations


Cited by
More filters
Book
01 Jan 1996
TL;DR: A review of the collected works of John Tate can be found in this paper, where the authors present two volumes of the Abel Prize for number theory, Parts I, II, edited by Barry Mazur and Jean-Pierre Serre.
Abstract: This is a review of Collected Works of John Tate. Parts I, II, edited by Barry Mazur and Jean-Pierre Serre. American Mathematical Society, Providence, Rhode Island, 2016. For several decades it has been clear to the friends and colleagues of John Tate that a “Collected Works” was merited. The award of the Abel Prize to Tate in 2010 added impetus, and finally, in Tate’s ninety-second year we have these two magnificent volumes, edited by Barry Mazur and Jean-Pierre Serre. Beyond Tate’s published articles, they include five unpublished articles and a selection of his letters, most accompanied by Tate’s comments, and a collection of photographs of Tate. For an overview of Tate’s work, the editors refer the reader to [4]. Before discussing the volumes, I describe some of Tate’s work. 1. Hecke L-series and Tate’s thesis Like many budding number theorists, Tate’s favorite theorem when young was Gauss’s law of quadratic reciprocity. When he arrived at Princeton as a graduate student in 1946, he was fortunate to find there the person, Emil Artin, who had discovered the most general reciprocity law, so solving Hilbert’s ninth problem. By 1920, the German school of algebraic number theorists (Hilbert, Weber, . . .) together with its brilliant student Takagi had succeeded in classifying the abelian extensions of a number field K: to each group I of ideal classes in K, there is attached an extension L of K (the class field of I); the group I determines the arithmetic of the extension L/K, and the Galois group of L/K is isomorphic to I. Artin’s contribution was to prove (in 1927) that there is a natural isomorphism from I to the Galois group of L/K. When the base field contains an appropriate root of 1, Artin’s isomorphism gives a reciprocity law, and all possible reciprocity laws arise this way. In the 1930s, Chevalley reworked abelian class field theory. In particular, he replaced “ideals” with his “idèles” which greatly clarified the relation between the local and global aspects of the theory. For his thesis, Artin suggested that Tate do the same for Hecke L-series. When Hecke proved that the abelian L-functions of number fields (generalizations of Dirichlet’s L-functions) have an analytic continuation throughout the plane with a functional equation of the expected type, he saw that his methods applied even to a new kind of L-function, now named after him. Once Tate had developed his harmonic analysis of local fields and of the idèle group, he was able prove analytic continuation and functional equations for all the relevant L-series without Hecke’s complicated theta-formulas. Received by the editors September 5, 2016. 2010 Mathematics Subject Classification. Primary 01A75, 11-06, 14-06. c ©2017 American Mathematical Society

2,014 citations

Journal ArticleDOI
TL;DR: Jana et al. as mentioned in this paper reported a three-step seeding protocol using a variety of different gold seeds, with average diameters in the range from 4 to 18 nm, with positively charged as well as negatively charged surface groups.
Abstract: We report studies on the synthesis of gold nanorods by a three-step seeding protocol method using a variety of different gold seeds. The synthetic method is adapted from one we published earlier (Jana et al. J. Phys. Chem. B 2001, 105, 4065). The seeds chosen for these studies have average diameters in the range from 4 to 18 nm, with positively charged as well as negatively charged surface groups. In all the cases, along with a large concentration of long rods, a small number of different shapes such as triangles, hexagons, and small rods are observed. The proportion of small rods increases with an increase in the seed size used for nanorod synthesis. For long nanorods synthesized by different seeds a comparison of various parameters such as length, width, and aspect ratio has been made. A dependence of the nanorod aspect ratio on the size of the seed is observed. Increasing the seed size results in lowering of the gold nanorod aspect ratios for a constant concentration of reagents. The charge on the seed...

918 citations

MonographDOI
01 Nov 2011
TL;DR: In this paper, the authors introduce colloid science and rheology, and present an overview of colloid physics and its applications in viscoelastic media. But they do not discuss the role of non-spherical particles.
Abstract: 1. Introduction to colloid science and rheology 2. Hydrodynamic effects 3. Brownian hard spheres 4. Stable colloidal suspensions 5. Non-spherical particles 6. Weakly flocculated suspensions 7. Thixotropy 8. Shear thickening 9. Rheometry of suspensions 10. Suspensions in viscoelastic media 11. Advanced topics.

792 citations

01 Jan 2009
TL;DR: In this article, a long series of experiments proving that the physical processes along fluid interfaces can be exploited for creating unusual fluidic objects was presented, such as liquid onions and mayonnaise droplets.
Abstract: Keywords: Droplets Bubbles Microfluidics Encapsulation Emulsion a b s t r a c t In this paper, we emphasize our long series of experiments proving that the physical processes along fluid interfaces can be exploited for creating unusual fluidic objects. We report for the first time a couple of new fluidic objects so-called “liquid onions” and “mayonnaise” droplets. The study starts from the observation of antibubbles, exhibiting unstable liquid‐air‐liquid interfaces. We show that the lifetime of such a system has the same origin as floating/coalescing droplets on liquid surfaces. By analyzing such behaviours, we created droplets bouncing on a liquid bath. The methods and physical phenomena collected in this paper provide a basis for the development of a discrete microfluidics. Open questions are underlined, experimental challenges and future applications are proposed.

540 citations

Journal ArticleDOI
TL;DR: In this review, the role of the surfactant in droplet-based microfluidics is discussed with an emphasis on the new molecules developed specifically to overcome the limitations of 'standard' surfactants.
Abstract: Surfactants are an essential part of the droplet-based microfluidic technology. They are involved in the stabilization of droplet interfaces, in the biocompatibility of the system and in the process of molecular exchange between droplets. The recent progress in the applications of droplet-based microfluidics has been made possible by the development of new molecules and their characterizations. In this review, the role of the surfactant in droplet-based microfluidics is discussed with an emphasis on the new molecules developed specifically to overcome the limitations of ‘standard’ surfactants. Emulsion properties and interfacial rheology of surfactant-laden layers strongly determine the overall capabilities of the technology. Dynamic properties of droplets, interfaces and emulsions are therefore very important to be characterized, understood and controlled. In this respect, microfluidic systems themselves appear to be very powerful tools for the study of surfactant dynamics at the time- and length-scale relevant to the corresponding microfluidic applications. More generally, microfluidic systems are becoming a new type of experimental platform for the study of the dynamics of interfaces in complex systems.

533 citations