scispace - formally typeset
Search or ask a question
Author

Dominique Patureau

Bio: Dominique Patureau is an academic researcher from Institut national de la recherche agronomique. The author has contributed to research in topics: Sludge & Anaerobic digestion. The author has an hindex of 32, co-authored 93 publications receiving 2670 citations. Previous affiliations of Dominique Patureau include Technical University of Denmark & Arts et Métiers ParisTech.


Papers
More filters
Journal ArticleDOI
TL;DR: Additional researches are needed, gathering chemical, microbiological and toxicological data to better understand the implied removal mechanisms, the interactions between both components and the environmental matrices and how composting process could be optimized to reduce the discharge of antibiotics and antibiotic resistance genes into the environment.

252 citations

Journal ArticleDOI
TL;DR: There is no specific natural ecological niche for aerobic denitrifiers but, as soon as selective pressure such as alternating aeration conditions is applied, this metabolism is amplified.
Abstract: Twenty-eight bacterial strains were isolated from an ecosystem adapted to fluctuating oxic-anoxic conditions. This ecosystem comprised a mixture of different natural and wastewater treatment environments. Among the 28 strains isolated, 10 exhibited aerobic denitrifying activity, i.e., co-respiration of oxygen and nitrate and simultaneous production of nitrite by 4 of them and of nitrogen gas by the remaining 6. Comparisons between the 16S rDNA sequences of the 10 strains showed that 3 of them were identical to M. aerodenitrificans, whereas RAPD profiles showed that the 3 strains were identical to each other but that they were different from M. aerodenitrificans. This implies that alternating aerobic-anoxic conditions allowed the isolation of a new strain of this aerobic denitrifier. Moreover, other denitrifying bacteria belonging to the genera Paracoccus, Thiobacillus, Enterobacter, Comamonas, and Sphingomonas were isolated in this way. These data imply that a wide variety of bacteria are able to carry out this type of metabolism. M. aerodenitrificans was also detected in methanogenic, denitrifying, nitrifying, phosphate removal, and activated sludge ecosystems by two-step PCR amplification. After 4 months of acclimation to oxic-anoxic phases, the strain was also detected in a canal and in a pond. This suggests that there is no specific natural ecological niche for aerobic denitrifiers but, as soon as selective pressure such as alternating aeration conditions is applied, this metabolism is amplified.

129 citations

Journal ArticleDOI
TL;DR: This dual approach, comparing chemical and biological analysis, allowed us to confirm that most of the estrogenic activity occurring in this STP, which receives mainly domestic sewage, resulted from sex hormones.
Abstract: The steroid hormones estrone (E(1)), 17beta-estradiol (E(2)), estriol (E(3)), 17alpha-ethinylestradiol (EE(2)), and their conjugated forms were surveyed throughout an advanced sewage treatment plant (STP). The estrogen concentrations in water and sludge samples, collected in October 2004 and April 2005, were determined by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Simultaneously, the estrogenic activity was quantified using estrogen-responsive reporter cell lines (MELN) to investigate the behavior of overall estrogenic compounds. The estrogen concentrations in the inlet ranged from 200 to 500 ng/L, with the contribution of conjugated forms being higher than 50%. The major estrogens in influent were E(1) and E(3). The estrogenic activity was between 25 and 130 ng/L of E(2) equivalents (EEQs). Estrogen concentrations and estrogenicity measured in the inlet and in primary treated sewage were similar, showing a weak impact of primary treatment on hormone removal. In contrast, both estrogen concentration and estrogenicity decreased during biological treatment, with high removal efficiencies (>90%). Estrone, E(2), and EE(2) persisted in the treated water below 10 ng/L, whereas the estrogenicity was lower than 5 ng/L of EEQs. Estrogen mass flux in the effluent and sludge represented less than 2 and 4%, respectively, of the inlet. Consequently, the fraction of estrogens sorbed into the sludge was very small, and biodegradation was the main vehicle for estrogen elimination. This dual approach, comparing chemical and biological analysis, allowed us to confirm that most of the estrogenic activity occurring in this STP, which receives mainly domestic sewage, resulted from sex hormones.

125 citations

Journal ArticleDOI
TL;DR: A better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems is offered, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs.

115 citations

Journal ArticleDOI
TL;DR: A comprehensive review of quantitative structure-activity relationships (QSAR) allowing the prediction of the fate of organic compounds in the environment from their molecular properties was done, and the combination of descriptors belonging to different categories led to improve QSAR performances.
Abstract: A comprehensive review of quantitative structure-activity relationships (QSAR) allowing the prediction of the fate of organic compounds in the environment from their molecular properties was done. The considered processes were water dissolution, dissociation, volatilization, retention on soils and sediments (mainly adsorption and desorption), degradation (biotic and abiotic), and absorption by plants. A total of 790 equations involving 686 structural molecular descriptors are reported to estimate 90 environmental parameters related to these processes. A significant number of equations was found for dissociation process (pKa), water dissolution or hydrophobic behavior (especially through the KOW parameter), adsorption to soils and biodegradation. A lack of QSAR was observed to estimate desorption or potential of transfer to water. Among the 686 molecular descriptors, five were found to be dominant in the 790 collected equations and the most generic ones: four quantum-chemical descriptors, the energy of the...

101 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1.
Abstract: Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.

3,232 citations

Journal ArticleDOI
TL;DR: A combination of stable isotope and acetylene (0.01% v/v) inhibition techniques were used for the first time to determine N2O production during denitrification, autotrophic nitrification and heterotrophic Nitrification in a silt loam soil at contrasting (20-70%) water-filled pore space (WFPS) as mentioned in this paper.
Abstract: A combination of stable isotope and acetylene (0.01% v/v) inhibition techniques were used for the first time to determine N2O production during denitrification, autotrophic nitrification and heterotrophic nitrification in a fertilised (200 kg N ha−1) silt loam soil at contrasting (20–70%) water-filled pore space (WFPS). 15N-N2O emissions from 14NH415NO3 replicates were attributed to denitrification and 15N-N2O from 15NH415NO3 minus that from 14NH415NO3 replicates was attributed to nitrification and heterotrophic nitrification in the presence of acetylene, as there was no dissimilatory nitrate reduction to ammonium or immobilisation and remineralisation of 15N-NO3−. All of the N2O emitted at 70% WFPS (31.6 mg N2O-N m−2 over 24 days; 1.12 μg N2O-N g dry soil−1; 0.16% of N applied) was produced during denitrification, but at 35–60% WFPS nitrification was the main process producing N2O, accounting for 81% of 15N-N2O emitted at 60% WFPS, and 7.9 μg 15N-N2O m−2 (0.28 ng 15N-N2O g dry soil−1) was estimated to be emitted over 7 days during heterotrophic nitrification in the 50% WFPS treatment and accounted for 20% of 15N-N2O from this treatment. Denitrification was the predominant N2O-producing process at 20% WFPS (2.6 μg 15N-N2O m−2 over 7 days; 0.09 ng 15N-N2O g dry soil−1; 85% of 15N-N2O from this treatment) and may have been due to the occurrence of aerobic denitrification at this WFPS. Our results demonstrate the usefulness of a combined stable isotope and acetylene approach to quantify N2O emissions from different processes and to show that several processes may contribute to N2O emission from agricultural soils depending on soil WFPS.

1,031 citations

Journal ArticleDOI
TL;DR: An in-depth review of the state-of-the-art technologies available to remove emerging contaminants (ECs) in water was undertaken in this paper, where the authors focused on the type of EC being removed, the conditions of the process and the outcomes achieved.

752 citations

Journal Article
TL;DR: A review of the turn of events and points of view of biogas in and its utilization for power, heat and in transport in the European Union (EU) and its Member States is presented in this article.
Abstract: This paper presents a review of the turn of events and points of view of biogas in and its utilization for power, heat and in transport in the European Union (EU) and its Member States. Biogas creation has expanded in the EU, empowered by the sustainable power strategies, notwithstanding monetary, ecological and atmosphere benefits, to arrive at 18 billion m3 methane (654 PJ) in 2015, speaking to half of the worldwide biogas creation. The EU is the world chief in biogas power creation, with more than 10 GW introduced and various 17,400 biogas plants, in contrast with the worldwide biogas limit of 15 GW in 2015. In the EU, biogas conveyed 127 TJ of warmth and 61 TWh of power in 2015; about half of absolute biogas utilization in Europe was bound to warm age. Europe is the world's driving maker of biomethane for the utilization as a vehicle fuel or for infusion into the petroleum gas network, with 459 plants in 2015 creating 1.2 billion m3 and 340 plants taking care of into the gas network, with a limit of 1.5 million m3. Around 697 biomethane filling stations guaranteed the utilization 160 million m3 of biomethane as a transport fuel in 2015.

703 citations

Journal ArticleDOI
TL;DR: The results indicate that microplastic counts increase over time where successive sludge applications are performed, and stress the relevance of sludge as a driver of soil microplastics contamination.

667 citations