scispace - formally typeset
Search or ask a question
Author

Dominique Thers

Other affiliations: Mines ParisTech
Bio: Dominique Thers is an academic researcher from University of Nantes. The author has contributed to research in topics: Xenon & Dark matter. The author has an hindex of 21, co-authored 36 publications receiving 3728 citations. Previous affiliations of Dominique Thers include Mines ParisTech.

Papers
More filters
Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, M. Anthony1, F. Arneodo7, Laura Baudis8, Boris Bauermeister9, M. L. Benabderrahmane7, T. Berger10, P. A. Breur2, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno7, Ran Budnik12, C. Capelli8, João Cardoso6, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, Jean-Pierre Cussonneau14, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, Sara Diglio14, A. Elykov13, G. Eurin11, J. Fei15, A. D. Ferella9, A. Fieguth5, W. Fulgione, A. Gallo Rosso, Michelle Galloway8, F. Gao1, M. Garbini3, C. Geis4, L. Grandi16, Z. Greene1, H. Qiu12, C. Hasterok11, E. Hogenbirk2, J. Howlett1, R. Itay12, F. Joerg11, B. Kaminsky13, Shingo Kazama8, A. Kish8, G. Koltman12, H. Landsman12, R. F. Lang17, L. Levinson12, Qing Lin1, Sebastian Lindemann13, Manfred Lindner11, F. Lombardi15, J. A. M. Lopes6, J. Mahlstedt9, A. Manfredini12, T. Marrodán Undagoitia11, Julien Masbou14, D. Masson17, M. Messina7, K. Micheneau14, Kate C. Miller16, A. Molinario, K. Morå9, M. Murra5, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack4, Bart Pelssers9, F. Piastra8, J. Pienaar16, V. Pizzella11, Guillaume Plante1, R. Podviianiuk, N. Priel12, D. Ramírez García13, L. Rauch11, S. Reichard8, C. Reuter17, B. Riedel16, A. Rizzo1, A. Rocchetti13, N. Rupp11, J.M.F. dos Santos6, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, J. Schreiner11, D. Schulte5, Marc Schumann13, L. Scotto Lavina19, M. Selvi3, P. Shagin18, E. Shockley16, Manuel Gameiro da Silva6, H. Simgen11, Dominique Thers14, F. Toschi3, F. Toschi13, Gian Carlo Trinchero, C. Tunnell16, N. Upole16, M. Vargas5, O. Wack11, Hongwei Wang20, Zirui Wang, Yuehuan Wei15, Ch. Weinheimer5, C. Wittweg5, J. Wulf8, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: In this article, a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS is reported.
Abstract: We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keVee ([4.9,40.9] keVnr), exhibits an ultralow electron recoil background rate of [82-3+5(syst)±3(stat)] events/(ton yr keVee). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c2, with a minimum of 4.1×10-47 cm2 at 30 GeV/c2 and a 90% confidence level.

1,808 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini, M. Alfonsi3, F. D. Amaro4, M. Anthony1, F. Arneodo5, P. Barrow6, Laura Baudis6, Boris Bauermeister7, M. L. Benabderrahmane5, T. Berger8, P. A. Breur2, April S. Brown2, Ethan Brown8, S. Bruenner9, Giacomo Bruno, Ran Budnik10, L. Bütikofer11, J. Calvén7, João Cardoso4, M. Cervantes12, D. Cichon9, D. Coderre11, Auke-Pieter Colijn2, Jan Conrad7, Jean-Pierre Cussonneau13, M. P. Decowski2, P. de Perio1, P. Di Gangi14, A. Di Giovanni5, Sara Diglio13, G. Eurin9, J. Fei15, A. D. Ferella7, A. Fieguth16, W. Fulgione, A. Gallo Rosso, Michelle Galloway6, F. Gao1, M. Garbini14, Robert Gardner17, C. Geis3, Luke Goetzke1, L. Grandi17, Z. Greene1, C. Grignon3, C. Hasterok9, E. Hogenbirk2, J. Howlett1, R. Itay10, B. Kaminsky11, Shingo Kazama6, G. Kessler6, A. Kish6, H. Landsman10, R. F. Lang12, D. Lellouch10, L. Levinson10, Qing Lin1, Sebastian Lindemann9, Manfred Lindner9, F. Lombardi15, J. A. M. Lopes4, A. Manfredini10, I. Mariș5, T. Marrodán Undagoitia9, Julien Masbou13, F. V. Massoli14, D. Masson12, D. Mayani6, M. Messina1, K. Micheneau13, A. Molinario, K. Morâ7, M. Murra16, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack3, P. Pakarha6, Bart Pelssers7, R. Persiani13, F. Piastra6, J. Pienaar12, V. Pizzella9, M.-C. Piro8, Guillaume Plante1, N. Priel10, L. Rauch9, S. Reichard6, C. Reuter12, B. Riedel17, A. Rizzo1, S. Rosendahl16, N. Rupp9, R. Saldanha17, J.M.F. dos Santos4, Gabriella Sartorelli14, M. Scheibelhut3, S. Schindler3, J. Schreiner9, Marc Schumann11, L. Scotto Lavina19, M. Selvi14, P. Shagin18, E. Shockley17, Manuel Gameiro da Silva4, H. Simgen9, M. V. Sivers11, A. Stein20, S. Thapa17, Dominique Thers13, A. Tiseni2, Gian Carlo Trinchero, C. Tunnell17, M. Vargas16, N. Upole17, Hui Wang20, Zirui Wang, Yuehuan Wei6, Ch. Weinheimer16, J. Wulf6, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: The first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy, are reported and a profile likelihood analysis shows that the data are consistent with the background-only hypothesis.
Abstract: We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind The blinded search used 342 live days of data acquired between November 2016 and January 2017 Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (193±025)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector A profile likelihood analysis shows that the data are consistent with the background-only hypothesis We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c2, with a minimum of 77×10-47 cm2 for 35-GeV/c2 WIMPs at 90% CL

1,061 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers, F. Agostini2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, V. C. Antochi, E. Angelino7, E. Angelino2, J. R. Angevaare8, F. Arneodo9, D. Barge, Laura Baudis10, Boris Bauermeister, Lorenzo Bellagamba2, M. L. Benabderrahmane9, T. Berger11, April S. Brown10, Ethan Brown11, S. Bruenner, Giacomo Bruno9, Ran Budnik12, C. Capelli10, João Cardoso6, D. Cichon13, B. Cimmino2, M. Clark14, D. Coderre15, Auke-Pieter Colijn, Jan Conrad, Jean-Pierre Cussonneau, M. P. Decowski, A. Depoian14, P. Di Gangi2, A. Di Giovanni9, R. Di Stefano2, Sara Diglio, A. Elykov15, G. Eurin13, A. D. Ferella16, W. Fulgione7, P. Gaemers, R. Gaior, Michelle Galloway10, F. Gao1, L. Grandi, C. Hasterok2, C. Hils4, Katsuki Hiraide17, L. Hoetzsch13, J. Howlett1, M. Iacovacci2, Yoshitaka Itow18, F. Joerg13, N. Kato17, Shingo Kazama18, Masanori Kobayashi1, G. Koltman12, A. Kopec14, H. Landsman12, R. F. Lang14, L. Levinson12, Qing Lin1, Sebastian Lindemann15, Manfred Lindner13, F. Lombardi6, J. Long, J. A. M. Lopes6, E. López Fune, C. Macolino, Joern Mahlstedt, A. Mancuso2, Laura Manenti9, A. Manfredini10, F. Marignetti2, T. Marrodán Undagoitia13, K. Martens17, Julien Masbou, D. Masson15, S. Mastroianni2, M. Messina, Kentaro Miuchi19, K. Mizukoshi19, A. Molinario, K. Morå1, S. Moriyama17, Y. Mosbacher12, M. Murra5, J. Naganoma, Kaixuan Ni20, Uwe Oberlack4, K. Odgers11, J. Palacio13, Bart Pelssers, R. Peres10, J. Pienaar21, V. Pizzella13, Guillaume Plante1, J. Qin14, H. Qiu12, D. Ramírez García15, S. Reichard10, A. Rocchetti15, N. Rupp13, J.M.F. dos Santos6, Gabriella Sartorelli2, N. Šarčević15, M. Scheibelhut4, J. Schreiner13, D. Schulte5, Marc Schumann15, L. Scotto Lavina, M. Selvi2, F. Semeria2, P. Shagin22, E. Shockley21, Manuel Gameiro da Silva6, H. Simgen13, A. Takeda18, C. Therreau, Dominique Thers, F. Toschi15, Gian Carlo Trinchero2, C. Tunnell22, M. Vargas5, G. Volta10, Hongwei Wang23, Yuehuan Wei20, Ch. Weinheimer5, M. Weiss12, D. Wenz4, C. Wittweg5, Z. Xu1, Masaki Yamashita18, J. Ye20, Guido Zavattini2, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis, Xavier Mougeot 
TL;DR: In this article, the XENON1T data was used for searches for new physics with low-energy electronic recoil data recorded with the Xenon1T detector, which enabled one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter.
Abstract: We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76±2stat events/(tonne×year×keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4σ significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by gae<3.8×10-12, gaeganeff<4.8×10-18, and gaegaγ<7.7×10-22 GeV-1, and excludes either gae=0 or gaegaγ=gaeganeff=0. The neutrino magnetic moment signal is similarly favored over background at 3.2σ, and a confidence interval of μν∈(1.4,2.9)×10-11 μB (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by β decays of tritium at 3.2σ significance with a corresponding tritium concentration in xenon of (6.2±2.0)×10-25 mol/mol. Such a trace amount can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses are decreased to 2.0σ and 0.9σ, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at (2.3±0.2) keV (68% C.L.) with a 3.0σ global (4.0σ local) significance over background. This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c2. We also consider the possibility that Ar37 may be present in the detector, yielding a 2.82 keV peak from electron capture. Contrary to tritium, the Ar37 concentration can be tightly constrained and is found to be negligible.

452 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, V. C. Antochi2, E. Angelino7, F. Arneodo8, D. Barge2, Laura Baudis9, Boris Bauermeister2, L. Bellagamba3, M. L. Benabderrahmane8, T. Berger10, P. A. Breur11, April S. Brown9, Ethan Brown10, S. Bruenner12, Giacomo Bruno8, Ran Budnik13, C. Capelli9, João Cardoso6, D. Cichon12, D. Coderre14, Auke-Pieter Colijn11, Jan Conrad2, Jean-Pierre Cussonneau15, M. P. Decowski11, P. de Perio1, A. Depoian16, P. Di Gangi3, A. Di Giovanni8, Sara Diglio15, A. Elykov14, G. Eurin12, J. Fei17, A. D. Ferella2, A. Fieguth5, W. Fulgione7, P. Gaemers11, A. Gallo Rosso, Michelle Galloway9, F. Gao1, M. Garbini3, L. Grandi18, Z. Greene1, C. Hasterok12, C. Hils4, E. Hogenbirk11, J. Howlett1, M. Iacovacci, R. Itay13, F. Joerg12, Shingo Kazama19, A. Kish9, Masanori Kobayashi1, G. Koltman13, A. Kopec16, H. Landsman13, R. F. Lang16, L. Levinson13, Qing Lin1, Sebastian Lindemann14, Manfred Lindner12, F. Lombardi17, F. Lombardi6, J. A. M. Lopes6, E. López Fune20, C. Macolino21, J. Mahlstedt2, A. Manfredini9, A. Manfredini13, Fabrizio Marignetti, T. Marrodán Undagoitia12, Julien Masbou15, S. Mastroianni, M. Messina8, K. Micheneau15, Kate C. Miller18, A. Molinario, K. Morå2, Y. Mosbacher13, M. Murra5, J. Naganoma22, Kaixuan Ni17, Uwe Oberlack4, K. Odgers10, J. Palacio15, Bart Pelssers2, R. Peres9, J. Pienaar18, V. Pizzella12, Guillaume Plante1, R. Podviianiuk, J. Qin16, H. Qiu13, D. Ramírez García14, S. Reichard9, B. Riedel18, A. Rocchetti14, N. Rupp12, J.M.F. dos Santos6, Gabriella Sartorelli3, N. Šarčević14, M. Scheibelhut4, S. Schindler4, J. Schreiner12, D. Schulte5, Marc Schumann14, L. Scotto Lavina20, M. Selvi3, P. Shagin22, E. Shockley18, Manuel Gameiro da Silva6, H. Simgen12, C. Therreau15, Dominique Thers15, F. Toschi14, Gian Carlo Trinchero7, C. Tunnell22, N. Upole18, M. Vargas5, G. Volta9, O. Wack12, Hongwei Wang23, Yuehuan Wei17, Ch. Weinheimer5, D. Wenz4, C. Wittweg5, J. Wulf9, J. Ye17, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis20 
TL;DR: Constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment are reported, and no DM or CEvNS detection may be claimed because the authors cannot model all of their backgrounds.
Abstract: We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keVee, we observe 30 MeV/c2, and absorption of dark photons and axionlike particles for mχ within 0.186–1 keV/c2.

412 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, M. Anthony1, V. C. Antochi2, F. Arneodo7, Laura Baudis8, Boris Bauermeister2, M. L. Benabderrahmane7, T. Berger9, P. A. Breur10, April S. Brown8, Ethan Brown9, S. Bruenner11, Giacomo Bruno7, Ran Budnik12, C. Capelli8, João Cardoso6, D. Cichon11, D. Coderre13, Auke-Pieter Colijn10, Jan Conrad2, Jean-Pierre Cussonneau14, M. P. Decowski10, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, Sara Diglio14, A. Elykov13, G. Eurin11, J. Fei15, A. D. Ferella2, A. Fieguth5, W. Fulgione, A. Gallo Rosso, Michelle Galloway8, F. Gao1, M. Garbini3, L. Grandi16, Z. Greene1, C. Hasterok11, E. Hogenbirk10, J. Howlett1, M. Iacovacci, R. Itay12, F. Joerg11, Shingo Kazama17, A. Kish8, G. Koltman12, A. Kopec18, H. Landsman12, R. F. Lang18, L. Levinson12, Qing Lin1, Sebastian Lindemann13, Manfred Lindner11, F. Lombardi15, J. A. M. Lopes6, E. López Fune19, C. Macolino20, J. Mahlstedt2, A. Manfredini8, Fabrizio Marignetti, T. Marrodán Undagoitia11, Julien Masbou14, D. Masson18, S. Mastroianni, M. Messina7, K. Micheneau14, Kate C. Miller16, A. Molinario, K. Morå2, Y. Mosbacher12, M. Murra5, J. Naganoma, Kaixuan Ni15, Uwe Oberlack4, K. Odgers9, Bart Pelssers2, F. Piastra8, J. Pienaar16, V. Pizzella11, Guillaume Plante1, R. Podviianiuk, N. Priel12, H. Qiu12, D. Ramírez García13, S. Reichard8, B. Riedel16, A. Rizzo1, A. Rocchetti13, N. Rupp11, J.M.F. dos Santos6, Gabriella Sartorelli3, N. Šarčević13, M. Scheibelhut4, S. Schindler4, J. Schreiner11, D. Schulte5, Marc Schumann13, L. Scotto Lavina19, M. Selvi3, P. Shagin21, E. Shockley16, Manuel Gameiro da Silva6, H. Simgen11, C. Therreau14, Dominique Thers14, F. Toschi13, Gian Carlo Trinchero, C. Tunnell16, N. Upole16, M. Vargas5, O. Wack11, Hongwei Wang22, Zirui Wang, Yuehuan Wei15, Ch. Weinheimer5, D. Wenz4, C. Wittweg5, J. Wulf8, Z. Xu15, J. Ye15, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis19 
TL;DR: The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases and sets exclusion limits on the WIMP-nucleon interactions.
Abstract: We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3×10-42 cm2 at 30 GeV/c2 and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.

241 citations


Cited by
More filters
Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, M. Anthony1, F. Arneodo7, Laura Baudis8, Boris Bauermeister9, M. L. Benabderrahmane7, T. Berger10, P. A. Breur2, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno7, Ran Budnik12, C. Capelli8, João Cardoso6, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, Jean-Pierre Cussonneau14, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, Sara Diglio14, A. Elykov13, G. Eurin11, J. Fei15, A. D. Ferella9, A. Fieguth5, W. Fulgione, A. Gallo Rosso, Michelle Galloway8, F. Gao1, M. Garbini3, C. Geis4, L. Grandi16, Z. Greene1, H. Qiu12, C. Hasterok11, E. Hogenbirk2, J. Howlett1, R. Itay12, F. Joerg11, B. Kaminsky13, Shingo Kazama8, A. Kish8, G. Koltman12, H. Landsman12, R. F. Lang17, L. Levinson12, Qing Lin1, Sebastian Lindemann13, Manfred Lindner11, F. Lombardi15, J. A. M. Lopes6, J. Mahlstedt9, A. Manfredini12, T. Marrodán Undagoitia11, Julien Masbou14, D. Masson17, M. Messina7, K. Micheneau14, Kate C. Miller16, A. Molinario, K. Morå9, M. Murra5, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack4, Bart Pelssers9, F. Piastra8, J. Pienaar16, V. Pizzella11, Guillaume Plante1, R. Podviianiuk, N. Priel12, D. Ramírez García13, L. Rauch11, S. Reichard8, C. Reuter17, B. Riedel16, A. Rizzo1, A. Rocchetti13, N. Rupp11, J.M.F. dos Santos6, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, J. Schreiner11, D. Schulte5, Marc Schumann13, L. Scotto Lavina19, M. Selvi3, P. Shagin18, E. Shockley16, Manuel Gameiro da Silva6, H. Simgen11, Dominique Thers14, F. Toschi3, F. Toschi13, Gian Carlo Trinchero, C. Tunnell16, N. Upole16, M. Vargas5, O. Wack11, Hongwei Wang20, Zirui Wang, Yuehuan Wei15, Ch. Weinheimer5, C. Wittweg5, J. Wulf8, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: In this article, a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS is reported.
Abstract: We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keVee ([4.9,40.9] keVnr), exhibits an ultralow electron recoil background rate of [82-3+5(syst)±3(stat)] events/(ton yr keVee). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c2, with a minimum of 4.1×10-47 cm2 at 30 GeV/c2 and a 90% confidence level.

1,808 citations

Journal ArticleDOI
Jelle Aalbers1, F. Agostini2, M. Alfonsi3, F. D. Amaro4, Claude Amsler5, Elena Aprile6, Lior Arazi7, F. Arneodo8, P. Barrow9, Laura Baudis9, Laura Baudis1, M. L. Benabderrahmane8, T. Berger10, B. Beskers3, Amos Breskin7, P. A. Breur1, April S. Brown1, Ethan Brown10, S. Bruenner11, Giacomo Bruno, Ran Budnik7, Lukas Bütikofer5, J. Calvén12, João Cardoso4, D. Cichon11, D. Coderre5, Auke-Pieter Colijn1, Jan Conrad12, Jean-Pierre Cussonneau13, M. P. Decowski1, Sara Diglio13, Guido Drexlin14, Ehud Duchovni7, E. Erdal7, G. Eurin11, A. D. Ferella12, A. Fieguth15, W. Fulgione, A. Gallo Rosso, P. Di Gangi2, A. Di Giovanni8, Michelle Galloway9, M. Garbini2, C. Geis3, F. Glueck14, L. Grandi16, Z. Greene6, C. Grignon3, C. Hasterok11, Volker Hannen15, E. Hogenbirk1, J. Howlett6, D. Hilk14, C. Hils3, A. James9, B. Kaminsky5, Shingo Kazama9, Benjamin Kilminster9, A. Kish9, Lawrence M. Krauss17, H. Landsman7, R. F. Lang18, Qing Lin6, F. L. Linde1, Sebastian Lindemann11, Manfred Lindner11, J. A. M. Lopes4, Marrodan T. Undagoitia11, Julien Masbou13, F. V. Massoli2, D. Mayani9, M. Messina6, K. Micheneau13, A. Molinario, K. Morå12, E. Morteau13, M. Murra15, J. Naganoma19, Jayden L. Newstead17, Kaixuan Ni20, Uwe Oberlack3, P. Pakarha9, Bart Pelssers12, P. de Perio6, R. Persiani13, F. Piastra9, M.-C. Piro10, G. Plante6, L. Rauch11, S. Reichard18, A. Rizzo6, N. Rupp11, J.M.F. dos Santos4, G. Sartorelli2, M. Scheibelhut3, S. Schindler3, Marc Schumann5, Marc Schumann21, Jochen Schreiner11, L. Scotto Lavina13, M. Selvi2, P. Shagin19, Miguel Silva4, Hardy Simgen11, P. Sissol3, M. von Sivers5, D. Thers13, J. Thurn22, A. Tiseni1, Roberto Trotta23, C. Tunnell1, Kathrin Valerius14, M. Vargas15, Hongwei Wang24, Yuehuan Wei9, Ch. Weinheimer15, T. Wester22, J. Wulf9, Yanxi Zhang6, T. Zhu9, Kai Zuber22 
TL;DR: DARk matter WImp search with liquid xenoN (DARWIN) as mentioned in this paper is an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core.
Abstract: DARk matter WImp search with liquid xenoN (DARWIN(2)) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary g ...

553 citations

Journal ArticleDOI
28 Feb 2018-Nature
TL;DR: The analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles.
Abstract: The large absorption of the 21-centimetre transition of hydrogen around redshift 20 is explained by radiation from the first stars, combined with excess cooling of the cosmic gas caused by baryon–dark matter scattering. As the first stars heated hydrogen in the early Universe, the 21-cm hyperfine line—an astronomical standard that represents the spin-flip transition in the ground state of atomic hydrogen—was altered, causing the hydrogen gas to absorb photons from the microwave background. This should produce an observable absorption signal at frequencies of less than 200 megahertz (MHz). Judd Bowman and colleagues report the observation of an absorption profile centred at a frequency of 78 MHz that is about 19 MHz wide and 0.5 kelvin deep. The profile is generally in line with expectations, although it is deeper than predicted. An accompanying paper by Rennan Barkana suggests that baryons were interacting with cold dark-matter particles in the early Universe, cooling the gas more than had been expected. The cosmic radio-frequency spectrum is expected to show a strong absorption signal corresponding to the 21-centimetre-wavelength transition of atomic hydrogen around redshift 20, which arises from Lyman-α radiation from some of the earliest stars1,2,3,4. By observing this 21-centimetre signal—either its sky-averaged spectrum5 or maps of its fluctuations, obtained using radio interferometers6,7—we can obtain information about cosmic dawn, the era when the first astrophysical sources of light were formed. The recent detection of the global 21-centimetre spectrum5 reveals a stronger absorption than the maximum predicted by existing models, at a confidence level of 3.8 standard deviations. Here we report that this absorption can be explained by the combination of radiation from the first stars and excess cooling of the cosmic gas induced by its interaction with dark matter8,9,10. Our analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles. Our analysis also confirms that dark matter is highly non-relativistic and at least moderately cold, and primordial velocities predicted by models of warm dark matter are potentially detectable. These results indicate that 21-centimetre cosmology can be used as a dark-matter probe.

487 citations

01 Jan 2003
TL;DR: In this paper, the thermal and epithermal self-shielding factors in different materials (Al, Au, Cd, Co, Cu, Eu, Gd, In, Ir, Mo, Ni, Pt, Pb, Rh, Sc, Sm and Ta) and different geometries (foils, wires, spheres and) have been calculated using the MCNP code.
Abstract: The presence of a sample in the neutron field of a nuclear reactor creates a perturbation of the local neutron fluxes. In general, the interpretation of the sample activation due to thermal and epithermal neutrons requires the knowledge of two corrective parameters: the thermal neutron self-shielding factor, Gth, and the resonance neutron self-shielding factor, Gres. Thermal neutron self-shielding factors in different materials (Al, Au, Cd, Co, Cu, Eu, Gd, In, Ir, Mo, Ni, Pt, Pb, Rh, Sc, Sm and Ta) and different geometries (foils, wires, spheres and) have been calculated by using the MCNP code.

473 citations

Journal ArticleDOI
TL;DR: The present experimental status of dark matter theory and experiment is overview, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-rays, neutrino telescopes, and the LHC.
Abstract: We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.

454 citations