scispace - formally typeset
Search or ask a question
Author

Donal J. Brennan

Bio: Donal J. Brennan is an academic researcher from Mater Misericordiae University Hospital. The author has contributed to research in topics: Breast cancer & Cancer. The author has an hindex of 42, co-authored 129 publications receiving 6598 citations. Previous affiliations of Donal J. Brennan include University College Dublin & Mater Health Services.


Papers
More filters
Journal ArticleDOI
TL;DR: Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8+ T-cell-dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy.
Abstract: Immune-regulated pathways influence multiple aspects of cancer development. In this article we demonstrate that both macrophage abundance and T-cell abundance in breast cancer represent prognostic indicators for recurrence-free and overall survival. We provide evidence that response to chemotherapy is in part regulated by these leukocytes; cytotoxic therapies induce mammary epithelial cells to produce monocyte/macrophage recruitment factors, including colony stimulating factor 1 (CSF1) and interleukin-34, which together enhance CSF1 receptor (CSF1R)–dependent macrophage infiltration. Blockade of macrophage recruitment with CSF1R-signaling antagonists, in combination with paclitaxel, improved survival of mammary tumor–bearing mice by slowing primary tumor development and reducing pulmonary metastasis. These improved aspects of mammary carcinogenesis were accompanied by decreased vessel density and appearance of antitumor immune programs fostering tumor suppression in a CD8 + T-cell–dependent manner. These data provide a rationale for targeting macrophage recruitment/response pathways, notably CSF1R, in combination with cytotoxic therapy, and identification of a breast cancer population likely to benefit from this novel therapeutic approach. Significance: These findings reveal that response to chemotherapy is in part regulated by the tumor immune microenvironment and that common cytotoxic drugs induce neoplastic cells to produce monocyte/macrophage recruitment factors, which in turn enhance macrophage infiltration into mammary adenocarcinomas. Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8 + T-cell–dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy. Cancer Discovery; 1(1); 54–67. ©2011 AACR . This article is highlighted in the In This Issue feature, p. 4

1,520 citations

Journal ArticleDOI
TL;DR: These findings show how targeting TAMs can effectively overcome therapeutic resistance mediated by TICs and improve chemotherapeutic efficacy, inhibits metastasis, and increases antitumor T-cell responses.
Abstract: Tumor-infiltrating immune cells can promote chemoresistance and metastatic spread in aggressive tumors. Consequently, the type and quality of immune responses present in the neoplastic stroma are highly predictive of patient outcome in several cancer types. In addition to host immune responses, intrinsic tumor cell activities that mimic stem cell properties have been linked to chemoresistance, metastatic dissemination, and the induction of immune suppression. Cancer stem cells are far from a static cell population; rather, their presence seems to be controlled by highly dynamic processes that are dependent on cues from the tumor stroma. However, the impact immune responses have on tumor stem cell differentiation or expansion is not well understood. In this study, we show that targeting tumor-infiltrating macrophages (TAM) and inflammatory monocytes by inhibiting either the myeloid cell receptors colony-stimulating factor-1 receptor (CSF1R) or chemokine (C-C motif) receptor 2 (CCR2) decreases the number of tumor-initiating cells (TIC) in pancreatic tumors. Targeting CCR2 or CSF1R improves chemotherapeutic efficacy, inhibits metastasis, and increases antitumor T-cell responses. Tumor-educated macrophages also directly enhanced the tumor-initiating capacity of pancreatic tumor cells by activating the transcription factor STAT3, thereby facilitating macrophage-mediated suppression of CD8(+) T lymphocytes. Together, our findings show how targeting TAMs can effectively overcome therapeutic resistance mediated by TICs.

780 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated whether inhibition of IL-6 has therapeutic activity in ovarian cancer via abrogation of a tumor-promoting cytokine network, and they combined pre-clinical and in silico experiments with a phase II clinical trial of the anti-IL-6 antibody siltuximab in patients with platinum-resistant ovarian cancer.
Abstract: Purpose: We investigated whether inhibition of IL-6 has therapeutic activity in ovarian cancer via abrogation of a tumor-promoting cytokine network. Experimental Design: We combined pre-clinical and in silico experiments with a phase II clinical trial of the anti-IL-6 antibody siltuximab in patients with platinum-resistant ovarian cancer. Results: Automated immunohistochemistry on tissue microarrays from 221 ovarian cancer cases demonstrated that intensity of IL-6 staining in malignant cells significantly associated with poor prognosis. Treatment of ovarian cancer cells with siltuximab reduced constitutive cytokine and chemokine production and also inhibited IL-6 signalling, tumor growth, the tumor-associated macrophage infiltrate and angiogenesis in IL-6-producing intraperitoneal ovarian cancer xenografts. In the clinical trial, the primary endpoint was response rate as assessed by combined RECIST and CA125 criteria. One patient of eighteen evaluable had a partial response, whilst seven others had periods of disease stabilization. In patients treated for six months, there was a significant decline in plasma levels of IL-6-regulated CCL2, CXCL12 and VEGF. Gene expression levels of factors that were reduced by siltuximab treatment in the patients significantly correlated with high IL-6 pathway gene expression and macrophage markers in microarray analyses of ovarian cancer biopsies. Conclusions: IL-6 stimulates inflammatory cytokine production, tumor angiogenesis and the tumor macrophage infiltrate in ovarian cancer and these actions can be inhibited by a neutralising anti-IL-6 antibody in pre-clinical and clinical studies.

348 citations

Journal ArticleDOI
TL;DR: Emerging data suggests that measurement of survivin can aid the early diagnosis of bladder cancer, determine prognosis in multiple cancer types and predict response to diverse anti-cancer therapies.

258 citations

Journal ArticleDOI
TL;DR: The prognostic significance of stromal PDGF beta-receptor expression was particularly prominent in tumors from premenopausal women and should be considered in ongoing clinical development of PDGF receptor inhibitors.
Abstract: This study systematically analyzes platelet-derived growth factor (PDGF) receptor expression in six types of common tumors as well as examines associations between PDGF β-receptor status and clinicopathological characteristics in breast cancer. PDGF receptor expression was determined by immunohistochemistry on tumor tissue microarrays. Breast tumor data were combined with prognostic factors and related to outcome endpoints. PDGF α- and β-receptors were independently expressed, at variable frequencies, in the tumor stroma of all tested tumor types. There was a significant association between PDGF β-receptor expression on fibroblasts and perivascular cells in individual colon and prostate tumors. In breast cancer, high stromal PDGF β-receptor expression was significantly associated with high histopathological grade, estrogen receptor negativity, and high HER2 expression. High stromal PDGF β-receptor expression was correlated with significantly shorter recurrence-free and breast cancer-specific survival. The prognostic significance of stromal PDGF β-receptor expression was particularly prominent in tumors from premenopausal women. Stromal PDGF α- and β-receptor expression is a common, but variable and independent, property of solid tumors. In breast cancer, stromal PDGF β-receptor expression significantly correlates with less favorable clinicopathological parameters and shorter survival. These findings highlight the prognostic significance of stromal markers and should be considered in ongoing clinical development of PDGF receptor inhibitors.

226 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The paradoxical roles of the tumor microenvironment during specific stages of cancer progression and metastasis are discussed, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.
Abstract: Cancers develop in complex tissue environments, which they depend on for sustained growth, invasion and metastasis. Unlike tumor cells, stromal cell types within the tumor microenvironment (TME) are genetically stable and thus represent an attractive therapeutic target with reduced risk of resistance and tumor recurrence. However, specifically disrupting the pro-tumorigenic TME is a challenging undertaking, as the TME has diverse capacities to induce both beneficial and adverse consequences for tumorigenesis. Furthermore, many studies have shown that the microenvironment is capable of normalizing tumor cells, suggesting that re-education of stromal cells, rather than targeted ablation per se, may be an effective strategy for treating cancer. Here we discuss the paradoxical roles of the TME during specific stages of cancer progression and metastasis, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.

5,396 citations

Journal ArticleDOI
TL;DR: Most of the hallmarks of cancer are enabled and sustained to varying degrees through contributions from repertoires of stromal cell types and distinctive subcell types, which presents interesting new targets for anticancer therapy.

3,486 citations

Journal ArticleDOI
TL;DR: This work considers myeloid cells as an intricately connected, complex, single system and focuses on how tumours manipulate the myeloids system to evade the host immune response.
Abstract: Here, the authors discuss how the immune activities of myeloid cells, such as macrophages and dendritic cells, are affected by the immunosuppressive tumour environment. They propose that tumours can evade the immune system by promoting aberrant differentiation and function of the entire myeloid system.

2,966 citations

Journal ArticleDOI
17 Jul 2014-Immunity
TL;DR: Therapeutic success in targeting these protumoral roles in preclinical models and in early clinical trials suggests that macrophages are attractive targets as part of combination therapy in cancer treatment.

2,945 citations

Journal ArticleDOI
TL;DR: It is surmised that TAMs can provide tools to tailor the use of cytoreductive therapies and immunotherapy in a personalized medicine approach, and that TAM-focused therapeutic strategies have the potential to complement and synergize with both chemotherapy and immunotherapies.
Abstract: Macrophages are crucial drivers of tumour-promoting inflammation. Tumour-associated macrophages (TAMs) contribute to tumour progression at different levels: by promoting genetic instability, nurturing cancer stem cells, supporting metastasis, and taming protective adaptive immunity. TAMs can exert a dual, yin-yang influence on the effectiveness of cytoreductive therapies (chemotherapy and radiotherapy), either antagonizing the antitumour activity of these treatments by orchestrating a tumour-promoting, tissue-repair response or, instead, enhancing the overall antineoplastic effect. TAMs express molecular triggers of checkpoint proteins that regulate T-cell activation, and are targets of certain checkpoint-blockade immunotherapies. Other macrophage-centred approaches to anticancer therapy are under investigation, and include: inhibition of macrophage recruitment to, and/or survival in, tumours; functional re-education of TAMs to an antitumour, 'M1-like' mode; and tumour-targeting monoclonal antibodies that elicit macrophage-mediated extracellular killing, or phagocytosis and intracellular destruction of cancer cells. The evidence supporting these strategies is reviewed herein. We surmise that TAMs can provide tools to tailor the use of cytoreductive therapies and immunotherapy in a personalized medicine approach, and that TAM-focused therapeutic strategies have the potential to complement and synergize with both chemotherapy and immunotherapy.

2,338 citations