scispace - formally typeset
Search or ask a question
Author

Donald B. Rubin

Other affiliations: University of Chicago, Harvard University, Princeton University  ...read more
Bio: Donald B. Rubin is an academic researcher from Tsinghua University. The author has contributed to research in topics: Causal inference & Missing data. The author has an hindex of 132, co-authored 515 publications receiving 262632 citations. Previous affiliations of Donald B. Rubin include University of Chicago & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: The article describes how and why the author became involved in consulting for the tobacco industry and briefly discusses the four relatively distinct statistical topics that were the primary focus of his work.
Abstract: This article describes how and why I became involved in consulting for the tobacco industry. I briefly discuss the four relatively distinct statistical topics that were the primary focus of my work, all of which have been central to my published academic research for over three decades: missing data; causal inference; adjustment for covariates in observational studies; and meta-analysis. To me, it is entirely appropriate to present the application of this academic work in a legal setting.

16 citations

Proceedings ArticleDOI
27 Mar 1999
TL;DR: In this article, the authors describe the commissioning of the first three accelerating modules of a superconducting RF system consisting of four single-cell cavity modules, which is an important part of the CESR Luminosity Upgrade.
Abstract: The new superconducting RF system consisting of four single-cell cavity modules is an important part of the CESR Luminosity Upgrade. We describe the commissioning of the first three accelerating modules. This includes in situ testing and conditioning, pulsed power and beam processing of RF windows, commissioning of various cryogenic feedback loops, measuring cavity spacing and phasing with beam, and high-current operation.

16 citations

Journal ArticleDOI
Hal S. Stern1, Doreen Arcus1, Jerome Kagan1, Donald B. Rubin1, Nancy Snidman1 
TL;DR: In this paper, a finite mixture model was applied to two sets of longitudinal observations of infants and young children, and a measure of predictive efficacy was described for comparing the mixture model with competing models, principally a linear regression analysis.
Abstract: Temperamental characteristics can be conceptualized as either continuous dimensions or qualitative categories. The distinction concerns the underlying temperamental characteristics rather than the measured variables, which can usually be recorded as either continuous or categorical variables. A finite mixture model captures the categorical view, and we apply such a model here to two sets of longitudinal observations of infants and young children. A measure of predictive efficacy is described for comparing the mixture model with competing models, principally a linear regression analysis. The mixture model performs mildly better than the linear regression model with respect to this measure of fit to the data; however, the primary advantage of the mixture model relative to competing approaches, is that, because it matches our a priori theory, it can be easily used to address improvements and corrections to the theory, and to suggest extensions of the research.

16 citations

Journal ArticleDOI
TL;DR: The Neyman-Fisher controversy as discussed by the authors has had a deleterious impact on the development of statistics, with a major consequence being that potential outcomes were ignored in favor of linear models and classical statistical procedures that are imprecise.
Abstract: The Neyman-Fisher controversy considered here originated with the 1935 presentation of Jerzy Neyman's Statistical Problems in Agricultural Experimentation to the Royal Statistical Society. Neyman asserted that the standard ANOVA F-test for randomized complete block designs is valid, whereas the analogous test for Latin squares is invalid in the sense of detecting differentiation among the treatments, when none existed on average,more often than desired (i.e., having a higher Type I error than advertised). However, Neyman's expressions for the expected mean residual sum of squares, for both designs, are generally incorrect. Furthermore, Neyman's belief that the Type I error (when testing the null hypothesis of zero average treatment effects) is higher than desired, whenever the expected mean treatment sum of squares is greater than the expected mean residual sum of squares, is generally incorrect. Simple examples show that, without further assumptions on the potential outcomes, one cannot determine the Type I error of the F-test from expected sums of squares. Ultimately, we believe that the Neyman- Fisher controversy had a deleterious impact on the development of statistics, with a major consequence being that potential outcomes were ignored in favor of linear models and classical statistical procedures that are imprecise without applied contexts.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a model is described in an lmer call by a formula, in this case including both fixed-and random-effects terms, and the formula and data together determine a numerical representation of the model from which the profiled deviance or the profeatured REML criterion can be evaluated as a function of some of model parameters.
Abstract: Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.

50,607 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: This paper examines eight published reviews each reporting results from several related trials in order to evaluate the efficacy of a certain treatment for a specified medical condition and suggests a simple noniterative procedure for characterizing the distribution of treatment effects in a series of studies.

33,234 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations