scispace - formally typeset
Search or ask a question
Author

Donald B. Rubin

Other affiliations: University of Chicago, Harvard University, Princeton University  ...read more
Bio: Donald B. Rubin is an academic researcher from Tsinghua University. The author has contributed to research in topics: Causal inference & Missing data. The author has an hindex of 132, co-authored 515 publications receiving 262632 citations. Previous affiliations of Donald B. Rubin include University of Chicago & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is argued that Bayesian and likelihood methods of inference should be utilized more generally to analyze real data and should be used to evaluate the long term performance of procedures.
Abstract: A simple example is presented that illustrates advantages of Bayesian and likelihood methods of inference relative to sampling distribution methods of inference. It is argued that Bayesian and likelihood methods of inference should be utilized more generally to analyze real data. Sampling distributions should be used to evaluate the long term performance of procedures.

9 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss a simple but possibly canonical, example of uncongeniality when using multiple imputations to create synthetic data, which specifically addresses the choices made by the imputer.
Abstract: Several statistical agencies have started to use multiply-imputed synthetic microdata to create public-use data in major surveys. The purpose of doing this is to protect the confidentiality of respondents’ identities and sensitive attributes, while allowing standard complete-data analyses of microdata. A key challenge, faced by advocates of synthetic data, is demonstrating that valid statistical inferences can be obtained from such synthetic data for non-confidential questions. Large discrepancies between observed-data and synthetic-data analytic results for such questions may arise because of uncongeniality; that is, differences in the types of inputs available to the imputer, who has access to the actual data, and to the analyst, who has access only to the synthetic data. Here, we discuss a simple, but possibly canonical, example of uncongeniality when using multiple imputation to create synthetic data, which specifically addresses the choices made by the imputer. An initial, unanticipated but not surprising, conclusion is that non-confidential design information used to impute synthetic data should be released with the confidential synthetic data to allow users of synthetic data to avoid possible grossly conservative inferences.

8 citations

Book ChapterDOI
09 Nov 2011
TL;DR: This work discusses imputation, multiple imputation (MI), and other strategies to handle missing data, together with their theoretical background, which is a statistically valid strategy for handling missing data.

8 citations

Journal ArticleDOI
TL;DR: This work explores the use of a direct likelihood approach for parsimonious model selection and proposes comparing values of scaled maximized likelihood functions under competitive models to select preferred models.
Abstract: Many empirical settings involve the specification of models leading to complicated likelihood functions, for example, finite mixture models that arise in causal inference when using Principal Stratification PS. Traditional asymptotic results cannot be trusted for the associated likelihood functions, whose logarithms are not close to being quadratic and may be multimodal even with large sample sizes. We first investigate the shape of the likelihood function with models based on PS by providing diagnostic tools for evaluating ellipsoidal approximations based on the second derivatives of the log-likelihood at a mode. In these settings, inference based on standard approximations is inappropriate, and other forms of inference are required. We explore the use of a direct likelihood approach for parsimonious model selection and, specifically, propose comparing values of scaled maximized likelihood functions under competitive models to select preferred models. An extensive simulation study provides guidelines, for calibrating the use of scaled log-likelihood ratio statistics, as functions of the complexity of the models being compared.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a model is described in an lmer call by a formula, in this case including both fixed-and random-effects terms, and the formula and data together determine a numerical representation of the model from which the profiled deviance or the profeatured REML criterion can be evaluated as a function of some of model parameters.
Abstract: Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.

50,607 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: This paper examines eight published reviews each reporting results from several related trials in order to evaluate the efficacy of a certain treatment for a specified medical condition and suggests a simple noniterative procedure for characterizing the distribution of treatment effects in a series of studies.

33,234 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations