scispace - formally typeset
Search or ask a question
Author

Donald L. Rowe

Bio: Donald L. Rowe is an academic researcher from University of Sydney. The author has contributed to research in topics: Electroencephalography & Attention deficit hyperactivity disorder. The author has an hindex of 17, co-authored 20 publications receiving 1576 citations. Previous affiliations of Donald L. Rowe include Westmead Hospital & Millennium Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: A nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters and provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.
Abstract: Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms---mainly slow wave, delta, theta, alpha, and sleep spindle---with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.

425 citations

Journal ArticleDOI
TL;DR: A recent neurophysical model of propagation of electrical waves in the cortex is extended to include a physiologically motivated subcortical feedback loop via the thalamus, leading to predictions of their frequencies in terms of physiological parameters, and of correlations in their occurrence.
Abstract: A recent neurophysical model of propagation of electrical waves in the cortex is extended to include a physiologically motivated subcortical feedback loop via the thalamus. The electroencephalographic spectrum when the system is driven by white noise is then calculated analytically in terms of physiological parameters, including the effects of filtering of signals by the cerebrospinal fluid, skull, and scalp. The spectral power at low frequencies is found to vary as f(-1) when awake and f(-3) when asleep, with a breakpoint to a steeper power-law tail at frequencies above about 20 Hz in both cases; the f(-1) range concurs with recent magnetoencephalographic observations of such a regime. Parameter sensitivities are explored, enabling a model with fewer free parameters to be proposed, and showing that spectra predicted for physiologically reasonable parameter values strongly resemble those observed in the laboratory. Alpha and beta peaks seen near 10 Hz and twice that frequency, respectively, in the relaxed wakeful state are generated via subcortical feedback in this model, thereby leading to predictions of their frequencies in terms of physiological parameters, and of correlations in their occurrence. Subcortical feedback is also predicted to be responsible for production of anticorrelated peaks in deep sleep states that correspond to the occurrence of theta rhythm at around half the alpha frequency and sleep spindles at 3/2 times the alpha frequency. An additional positively correlated waking peak near three times the alpha frequency is also predicted and tentatively observed, as are two new types of sleep spindle near 5/2 and 7/2 times the alpha frequency, and anticorrelated with alpha. These results provide a theoretical basis for the conventional division of EEG spectra into frequency bands, but imply that the exact bounds of these bands depend on the individual. Three types of potential instability are found: one at zero frequency, another in the theta band at around half the alpha frequency, and a third at the alpha frequency itself.

331 citations

Journal ArticleDOI
TL;DR: It is shown that new model‐based electroencephalographic (EEG) methods can quantify neurophysiologic parameters that underlie EEG generation in ways that are complementary to and consistent with standard physiologic techniques.
Abstract: It is shown that new model-based electroencephalographic (EEG) methods can quantify neurophysiologic parameters that underlie EEG generation in ways that are complementary to and consistent with standard physiologic techniques. This is done by isolating parameter ranges that give good matches between model predictions and a variety of experimental EEG-related phenomena simultaneously. Resulting constraints range from the submicrometer synaptic level to length scales of tens of centimeters, and from timescales of around 1 ms to 1 s or more, and are found to be consistent with independent physiologic and anatomic measures. In the process, a new method of obtaining model parameters from the data is developed, including a Monte Carlo implementation for use when not all input data are available. Overall, the approaches used are complementary to other methods, constraining allowable parameter ranges in different ways and leading to much tighter constraints overall. EEG methods often provide the most restrictive individual constraints. This approach opens a new, noninvasive window on quantitative brain analysis, with the ability to monitor temporal changes, and the potential to map spatial variations. Unlike traditional phenomenologic quantitative EEG measures, the methods proposed here are based explicitly on physiology and anatomy.

231 citations

Journal ArticleDOI
TL;DR: This is the first study where a detailed biophysical model of the brain is used to estimate neurophysiological parameters underlying the transitions in a broad range of EEG spectra obtained from a large set of human data.

126 citations

Journal ArticleDOI
TL;DR: A recent neurophysical model of brain electrical activity is outlined and applied to EEG phenomena, which incorporates single-neuron physiology and the large-scale anatomy of corticocortical and corticothalamic pathways, including synaptic strengths, dendritic propagation, nonlinear firing responses, and axonal conduction.

120 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is argued that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the physical sciences.
Abstract: The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement Computational models at different space-time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and magnetoencephalogram (MEG) Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data This makes dynamic models critical in integrating theory and experiments We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the physical sciences

986 citations

Journal ArticleDOI
TL;DR: During visual working memory, the electroencephalographic (EEG) process producing 5-7 Hz frontal midline theta (fmtheta) activity exhibits multiple spectral modes involving at least three frequency bands and a wide range of amplitudes.

783 citations

Journal ArticleDOI
TL;DR: Evidence supports the view that collective, nonlinear dynamics are central to adaptive cortical activity and aberrant dynamic processes appear to underlie a number of brain disorders.
Abstract: Movement, cognition and perception arise from the collective activity of neurons within cortical circuits and across large-scale systems of the brain. While the causes of single neuron spikes have been understood for decades, the processes that support collective neural behavior in large-scale cortical systems are less clear and have been at times the subject of contention. Modeling large-scale brain activity with nonlinear dynamical systems theory allows the integration of experimental data from multiple modalities into a common framework that facilitates prediction, testing and possible refutation. This work reviews the core assumptions that underlie this computational approach, the methodological framework that fosters the translation of theory into the laboratory, and the emerging body of supporting evidence. While substantial challenges remain, evidence supports the view that collective, nonlinear dynamics are central to adaptive cortical activity. Likewise, aberrant dynamic processes appear to underlie a number of brain disorders.

714 citations

Journal ArticleDOI
TL;DR: This work extended the classical nonlinear lumped-parameter model of alpha rhythms, initially developed by Lopes da Silva and colleagues, to generate more complex dynamics and shows that the whole spectrum of MEG/EEG signals can be reproduced within the oscillatory regime of this model by simply changing the population kinetics.

674 citations

Journal ArticleDOI

663 citations