scispace - formally typeset
Search or ask a question
Author

Donald M. Camaioni

Other affiliations: Battelle Memorial Institute
Bio: Donald M. Camaioni is an academic researcher from Pacific Northwest National Laboratory. The author has contributed to research in topics: Catalysis & Radical. The author has an hindex of 38, co-authored 131 publications receiving 4603 citations. Previous affiliations of Donald M. Camaioni include Battelle Memorial Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: Chemical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352; Department of Chemistry, ShelbyHall, University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336; Notre Dame Radiation Laboratory, Universityof Notre Dame,Notre Dame, Indiana 46556.
Abstract: Chemical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352; Department of Chemistry, ShelbyHall, University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336; Notre Dame Radiation Laboratory, University of Notre Dame,Notre Dame, Indiana 46556; Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 0520-8107; Argonne NationalLaboratory, 9700 South Cass Avenue, Argonne, Illinois 60439; Department of Computer Science and Department of Physics, 2710 University Drive,Washington State University, Richland, Washington 99352-1671; Lawrence Berkeley National Laboratory, 1 Cyclotron Road Mailstop 1-0472,Berkeley, California 94720; Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300,Austin, Texas 78712; Office of Basic Energy Sciences, U.S. Department of Energy, SC-141/Germantown Building, 1000 Independence Avenue,S.W., Washington, D.C. 20585-1290; Department of Physics and Engineering Physics, Stevens Institute of Technology, Castle Point on Hudson,Hoboken, New Jersey 07030; Department of Chemistry, Johns Hopkins University, 34th and Charles Streets, Baltimore, Maryland 21218;Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062; Department of Chemistry, The Ohio StateUniversity, 100 West 18th Avenue, Columbus, Ohio 43210-1185; Department of Chemistry, Columbia University, Box 3107, Havemeyer Hall,New York, New York 10027; Department of Chemistry, University of Pittsburgh, Parkman Avenue and University Drive,Pittsburgh, Pennsylvania 15260; Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000; Department of Physics andAstronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-8019; Department of Chemistry,516 Rowland Hall, University of California, Irvine, Irvine, California 92697-2025; Stanford Synchrotron Radiation Laboratory, Stanford LinearAccelerator Center, 2575 Sand Hill Road, Mail Stop 69, Menlo Park, California 94025; School of Chemistry and Biochemistry, Georgia Institute ofTechnology, 770 State Street, Atlanta, Georgia 30332-0400; Geology Department, University of California, Davis, One Shields Avenue,Davis, California 95616-8605; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue,Cambridge, Massachusetts 02139-4307; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084Received July 23, 2004

534 citations

Journal ArticleDOI
TL;DR: The community is alerted that Plascak and Shields' values for the hydration free energies of H+, OH?
Abstract: In the subject paper, Plascak and Shields claim to have derived accurate experimental values for the hydration free energies of H+, OH?, and H3O+. The purpose of this comment is to alert the community that, in fact, their values are less accurate than the values they are meant to replace. In what follows we show the errors PS made and, by example, give practical advice on how to ensure correct assignment of standard states for reactions with water as a reactant or product in gas and solution phases.

358 citations

Journal ArticleDOI
TL;DR: Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system.
Abstract: Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal–organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu+ and ∼85% Cu2+. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu2+ to Cu+. The products, methanol, dimethyl ether, and CO2, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45–60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.

250 citations

Journal ArticleDOI
TL;DR: In this article, the HBEA-supported Pd catalyst optimally balances the competing rates of metal catalyzed hydrogenation as well as of solid acid-catalyzed dehydration and carbon-carbon coupling to combine hydrodeoxygenation and dimerization of phenol derivatives to C-12-C-18 bicycloalkanes.

208 citations

Journal ArticleDOI
TL;DR: The degree of substitution of Si(4+) by Al(3+) in the oxygen-terminated tetrahedra (Al T-sites) of zeolites determines the concentration of ion-exchange and Brønsted acid sites and is observed that identical zeolite types show dramatically different Al distributions.
Abstract: The degree of substitution of Si4+ by Al3+ in the oxygen-terminated tetrahedra (Al T-sites) of zeolites determines the concentration of ion-exchange and Bronsted acid sites. Because the location of the tetrahedra and the associated subtle variations in bond angles influence the acid strength, quantitative information about Al T-sites in the framework is critical to rationalize catalytic properties and to design new catalysts. A quantitative analysis is reported that uses a combination of extended X-ray absorption fine structure (EXAFS) analysis and 27Al MAS NMR spectroscopy supported by DFT-based molecular dynamics simulations. To discriminate individual Al atoms, sets of ab initio EXAFS spectra for various T-sites are generated from DFT-based molecular dynamics simulations, allowing quantitative treatment of the EXAFS single- and multiple-photoelectron scattering processes out to 3–4 atom shells surrounding the Al absorption center. It is observed that identical zeolite types show dramatically different ...

183 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: The SMD model may be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space, including, for example, the conductor-like screening algorithm.
Abstract: We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute−solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonho...

10,945 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: Renewable Resources Robert-Jan van Putten,†,‡ Jan C. van der Waal,† Ed de Jong,*,† Carolus B. Rasrendra,*,⊥ Hero J. Heeres,*,‡ and Johannes G. de Vries.
Abstract: Renewable Resources Robert-Jan van Putten,†,‡ Jan C. van der Waal,† Ed de Jong,*,† Carolus B. Rasrendra,‡,⊥ Hero J. Heeres,*,‡ and Johannes G. de Vries* †Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands ‡Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands DSM Innovative Synthesis BV, P.O. Box 18, 6160 MD Geleen, the Netherlands Department of Chemical Engineering, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia

2,267 citations

Journal ArticleDOI
TL;DR: This paper presents a new state-of-the-art implementation of the iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Key Laborotary of Catalysis, which automates the very labor-intensive and therefore expensive and therefore time-heavy and expensive process ofalysis.
Abstract: and Fuels Changzhi Li,† Xiaochen Zhao,† Aiqin Wang,† George W. Huber,†,‡ and Tao Zhang*,† †State Key Laborotary of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China ‡Department of Chemical and Biological Engineering, University of WisconsinMadison, Madison, Wisconsin 53706, United States

1,977 citations