scispace - formally typeset
Search or ask a question
Author

Dong Wang

Bio: Dong Wang is an academic researcher from Colorado State University. The author has contributed to research in topics: Endoplasmic reticulum & Unfolded protein response. The author has an hindex of 17, co-authored 28 publications receiving 2091 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that saturated fatty acids disrupt endoplasmic reticulum homeostasis and induce apoptosis in liver cells via mechanisms that do not involve ceramide accumulation.
Abstract: Accumulation of lipids in nonadipose tissues can lead to cell dysfunction and cell death, a phenomenon known as lipotoxicity. However, the signaling pathways and mechanisms linking lipid accumulati...

658 citations

Journal ArticleDOI
TL;DR: It is shown that hepatic steatosis characterized by increased saturated fatty acids is associated with increased liver injury and markers of endoplasmic reticulum stress, and the composition of fatty acids in the steatotic liver is an important determinant of susceptibility to liver injury.
Abstract: Nonalcoholic fatty liver disease is a relatively new hepatic sequela of obesity and type 2 diabetes. The pathogenesis of liver injury and disease progression in nonalcoholic fatty liver disease, however, is poorly understood. The present study examined the hypothesis that the composition of fatty acids in the steatotic liver promotes liver injury. Using dietary models of hepatic steatosis characterized by similar accumulation of total triglyceride but different composition of fatty acids, we show that hepatic steatosis characterized by increased saturated fatty acids is associated with increased liver injury and markers of endoplasmic reticulum stress (e.g. X-box binding protein-1 mRNA splicing and glucose-regulated protein 78 expression). These changes preceded and/or occurred independently of obesity and differences in leptin, TNFalpha, insulin action, and mitochondrial function. In addition, hepatic steatosis characterized by increased saturated fatty acids reduced proliferative capacity in response to partial hepatectomy and increased liver injury in response to lipopolysaccharide. These data suggest that the composition of fatty acids in the steatotic liver is an important determinant of susceptibility to liver injury.

492 citations

Journal ArticleDOI
TL;DR: Data suggest that ER stress is linked to palmitate-mediated cell death via mechanisms that include JNK activation, and that Chop gene and protein expression is increased in a dose-dependent fashion in H4IIE liver cells.
Abstract: Prolonged endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) have been linked to apoptosis via several mechanisms, including increased expression of C/EBP homol...

159 citations

Journal ArticleDOI
TL;DR: The data suggest that redistribution of ER luminal calcium contributes to long chain saturated fatty acid-mediated ER stress and cell death.
Abstract: Chronic exposure to elevated free fatty acids, in particular long chain saturated fatty acids, provokes endoplasmic reticulum (ER) stress and cell death in a number of cell types. The perturbations to the ER that instigate ER stress and activation of the unfolded protein in response to fatty acids in hepatocytes have not been identified. The present study employed H4IIE liver cells and primary rat hepatocytes to examine the hypothesis that saturated fatty acids induce ER stress via effects on ER luminal calcium stores. Exposure of H4IIE liver cells and primary hepatocytes to palmitate and stearate reduced thapsigargin-sensitive calcium stores and increased biochemical markers of ER stress over similar time courses (6 h). These changes preceded cell death, which was only observed at later time points (16 h). Co-incubation with oleate prevented the reduction in calcium stores, induction of ER stress markers and cell death observed in response to palmitate. Inclusion of calcium chelators, BAPTA-AM or EGTA, reduced palmitate- and stearate-mediated enrichment of cytochrome c in post-mitochondrial supernatant fractions and cell death. These data suggest that redistribution of ER luminal calcium contributes to long chain saturated fatty acid-mediated ER stress and cell death.

140 citations

Journal ArticleDOI
TL;DR: Saturated fatty acids induce ER stress and apoptosis at physiologic concentrations and with a relatively rapid time course, and it would appear that saturated fatty acid-mediated apoptosis occurs independently of caspase-12 activation.
Abstract: Lipid accumulation in non-adipose tissues leads to cell dysfunction and apoptosis, a phenomenon known as lipotoxicity. Recent evidence suggests that lipotoxicity in hepatocytes involves endoplasmic reticulum (ER) stress and c-Jun NH2-terminal kinase-mediated apoptosis. The present study examined (1) the dose–response and time course characteristics of fatty acid-mediated ER stress and apoptosis in H4IIE liver cells; (2) whether saturated fatty acid-induced apoptosis involved the ER-associated caspase-12; and (3) whether trans-10, cis-12-conjugated linoleic acid, an inhibitor of stearoyl-CoA desaturase, influenced fatty acid-mediated ER stress and apoptosis. Saturated fatty acids induced ER stress in a dose-dependent manner with a time course that was delayed relative to chemical-induction of ER stress. Saturated fatty acids increased caspase-9 and caspase-3 activity, however increased caspase-12 activity was not observed. Inhibition of stearoyl-CoA desaturase, using conjugated linoleic acid (trans-10, cis-12), augmented saturated fatty acid-induced ER stress and apoptosis. These data suggest that saturated fatty acids induce ER stress and apoptosis at physiologic concentrations and with a relatively rapid time course. It would appear that saturated fatty acid-mediated apoptosis occurs independently of caspase-12 activation. Since conjugated linoleic acid inhibited stearoyl-CoA desaturase activity, it is hypothesized that saturation, per se, plays a role in lipotoxicity in liver cells.

115 citations


Cited by
More filters
Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The endoplasmic reticulum is the major site in the cell for protein folding and trafficking and is central to many cellular functions and is emerging as a potential site for the intersection of inflammation and metabolic disease.

2,411 citations

Journal ArticleDOI
TL;DR: Endoplasmic reticulum stress and related signaling networks, (adipo)cytokines, and innate immunity are emerging as central pathways that regulate key features of NASH.

1,882 citations

Journal ArticleDOI
TL;DR: It is not clear whether NAFLD causes metabolic dysfunction or whether metabolic dysfunction is responsible for IHTG accumulation, or possibly both, but it is likely that abnormalities in fatty acid metabolism are key factors involved in the development of insulin resistance, dyslipidemia, and other cardiometabolic risk factors associated withNAFLD.

1,668 citations

Journal ArticleDOI
TL;DR: The data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults.
Abstract: Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle-triglyceride and -cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults.

1,532 citations

Journal ArticleDOI
TL;DR: A more integrated overview of the key role of these signalling lipids in inflammation, cancer and metabolic disease is attempted, and emerging strategies for therapeutic intervention are discussed.
Abstract: Signalling lipids such as eicosanoids, phosphoinositides, sphingolipids and fatty acids control important cellular processes, including cell proliferation, apoptosis, metabolism and migration. Extracellular signals from cytokines, growth factors and nutrients control the activity of a key set of lipid-modifying enzymes: phospholipases, prostaglandin synthase, 5-lipoxygenase, phosphoinositide 3-kinase, sphingosine kinase and sphingomyelinase. These enzymes and their downstream targets constitute a complex lipid signalling network with multiple nodes of interaction and cross-regulation. Imbalances in this network contribute to the pathogenesis of human disease. Although the function of a particular signalling lipid is traditionally studied in isolation, this review attempts a more integrated overview of the key role of these signalling lipids in inflammation, cancer and metabolic disease, and discusses emerging strategies for therapeutic intervention.

1,134 citations