scispace - formally typeset
Search or ask a question
Author

Dong Wang

Bio: Dong Wang is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Bearing (mechanical) & Computer science. The author has an hindex of 35, co-authored 144 publications receiving 3945 citations. Previous affiliations of Dong Wang include Sichuan University & City University of Hong Kong.


Papers
More filters
Journal ArticleDOI
TL;DR: A thorough review of vibration-based bearing and gear health indicators constructed from mechanical signal processing, modeling, and machine learning is presented and provides a basis for predicting the remaining useful life of bearings and gears.
Abstract: Prognostics and health management is an emerging discipline to scientifically manage the health condition of engineering systems and their critical components. It mainly consists of three main aspects: construction of health indicators, remaining useful life prediction, and health management. Construction of health indicators aims to evaluate the system’s current health condition and its critical components. Given the observations of a health indicator, prediction of the remaining useful life is used to infer the time when an engineering systems or a critical component will no longer perform its intended function. Health management involves planning the optimal maintenance schedule according to the system’s current and future health condition, its critical components and the replacement costs. Construction of health indicators is the key to predicting the remaining useful life. Bearings and gears are the most common mechanical components in rotating machines, and their health conditions are of great concern in practice. Because it is difficult to measure and quantify the health conditions of bearings and gears in many cases, numerous vibration-based methods have been proposed to construct bearing and gear health indicators. This paper presents a thorough review of vibration-based bearing and gear health indicators constructed from mechanical signal processing, modeling, and machine learning. This review paper will be helpful for designing further advanced bearing and gear health indicators and provides a basis for predicting the remaining useful life of bearings and gears. Most of the bearing and gear health indicators reviewed in this paper are highly relevant to simulated and experimental run-to-failure data rather than artificially seeded bearing and gear fault data. Finally, some problems in the literature are highlighted and areas for future study are identified.

326 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an enhanced Kurtogram based on the power spectrum of the envelope of the signals extracted from wavelet packet nodes at different depths, which measured the protrusion of the sparse representation.

323 citations

Journal ArticleDOI
TL;DR: In this article, a battery capacity prognostic method is developed to estimate the remaining useful life of lithium-ion batteries, which consists of a relevance vector machine and a conditional three-parameter capacity degradation model.

295 citations

Journal ArticleDOI
TL;DR: A new intelligent fault diagnosis scheme based on the extraction of statistical parameters from the paving of a wavelet packet transform (WPT), a distance evaluation technique (DET) and a support vector regression (SVR)-based generic multi-class solver is proposed.

222 citations

Journal ArticleDOI
TL;DR: In this paper, the sparsogram is constructed using the sparsity measurements of the power spectra from the envelopes of wavelet packet coefficients at different wavelet decomposition depths.

204 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: This paper attempts to survey and summarize the recent research and development of EMD in fault diagnosis of rotating machinery, providing comprehensive references for researchers concerning with this topic and helping them identify further research topics.

1,410 citations

Journal ArticleDOI
Feng Jia1, Yaguo Lei1, Jing Lin1, Xin Zhou1, Na Lu1 
TL;DR: The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.

1,289 citations