scispace - formally typeset
Search or ask a question
Author

Dong Wang

Bio: Dong Wang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Scanning tunneling microscope & Medicine. The author has an hindex of 49, co-authored 491 publications receiving 9970 citations. Previous affiliations of Dong Wang include University of Science and Technology of China & Shanghai University.


Papers
More filters
Journal ArticleDOI
TL;DR: The orthogonality between the Schiff base reaction and the boronic acid dehydration reaction is explored during the on-surface synthesis process.
Abstract: The orthogonality between the Schiff base reaction and the boronic acid dehydration reaction is explored during the on-surface synthesis process. By activating the above two reactions in one-step and employing asymmetrical substituted monomers and the 3-fold symmetric monomer 1,3,5-tris(4-aminophenyl)benzene (TAPB), highly ordered imine–boroxine hybrid single-layered covalent organic frameworks (sCOFs) have been successfully constructed on HOPG by a gas–solid interface reaction method and characterized by scanning tunnelling microscopy (STM). In particular, the reaction between the meta-substituted monomer and TAPB generates sCOFB with a windmill structure, which is the first sCOF with surface chirality so far reported. The demonstration of the one-step synthesis of multiple linkages to form sCOFs can further enlarge the sCOF family and expand the design routes for functional 2D organic nanomaterials.

49 citations

Journal ArticleDOI
TL;DR: The physical properties measurements of electrical transport and magnetism indicate these TiO@TiO1+x nanocrystals are a type-Russian superconductor of a recorded Tconset = 11 K in the binary Ti-O system, which could open up possibilities in interface superconductivity of nanostructured composites with well-controlled interfaces.
Abstract: Nano TiO2 is investigated intensely due to extraordinary photoelectric performances in photocatalysis, new-type solar cells, etc., but only very few synthesis and physical properties have been reported on nanostructured TiO or other low valent titanium-containing oxides. Here, a core-shell nanoparticle made of TiO core covered with a ≈5 nm shell of amorphous TiO1+x is newly constructed via a controllable reduction method to synthesize nano TiO core and subsequent soft oxidation to form the shell (TiO1+x ). The physical properties measurements of electrical transport and magnetism indicate these TiO@TiO1+x nanocrystals are a type-ІІ superconductor of a recorded Tconset = 11 K in the binary Ti-O system. This unusual superconductivity could be attributed to the interfacial effect due to the nearly linear gradient of O/Ti ratio across the outer amorphous layer. This novel synthetic method and enhanced superconductivity could open up possibilities in interface superconductivity of nanostructured composites with well-controlled interfaces.

47 citations

Journal ArticleDOI
TL;DR: It is demonstrated that an electric field applied between an STM tip and a substrate triggered the formation of a bilayer structure at the solid-liquid interface that was transformed into a monolayer kagome structure by changing the polarity of the electric field.
Abstract: The construction of a spatially defined assembly of molecular building blocks, especially in the vertical direction, presents a great challenge for surface molecular engineering. Herein, we demonstrate that an electric field applied between an STM tip and a substrate triggered the formation of a bilayer structure at the solid–liquid interface. In contrast to the typical high electric-field strength (109 V m−1) used to induce structural transitions in supramolecular assemblies, a mild electric field (105 V m−1) triggered the formation of a bilayer structure of a polar molecule on top of a nanoporous network of trimesic acid on graphite. The bilayer structure was transformed into a monolayer kagome structure by changing the polarity of the electric field. This tailored formation and large-scale phase transformation of a molecular assembly in the perpendicular dimension by a mild electric field opens perspectives for the manipulation of surface molecular nanoarchitectures.

47 citations

Journal ArticleDOI
Hong Liu1, Yun Zhang1, Dong Wang1, Minghu Pan1, Jin-Feng Jia1, Qi-Kun Xue1 
TL;DR: In this article, the structure and morphology of the Al(1.1) films were investigated by in situ reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM).

47 citations

Journal ArticleDOI
TL;DR: Molecular chirality is introduced at liquid-solid interfaces and D- or L-NIBC on the surface can guide parallel or nonparallel alignment of β-hairpins through a two-step process based on electrostatic-interaction-enhanced adsorption and subsequent stereoselective recognition.
Abstract: Molecular chirality is introduced at liquid–solid interfaces. A ring-like aggregation of amyloid Aβ(1–40) on N-isobutyryl-L-cysteine (L-NIBC)-modified gold substrate occurs at low Aβ(1–40) concentration, while D-NIBC modification only results in rod-like aggregation. Utilizing atomic force microscope controlled tip-enhanced Raman scattering, we directly observe the secondary structure information for Aβ(1–40) assembly in situ at the nanoscale. D- or L-NIBC on the surface can guide parallel or nonparallel alignment of β-hairpins through a two-step process based on electrostatic-interaction-enhanced adsorption and subsequent stereoselective recognition. Possible electrostatic interaction sites (R5 and K16) and a chiral recognition site (H14) of Aβ(1–40) are proposed, which may provide insight into the understanding of this effect.

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material.
Abstract: Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively They are present in biological fluids and are involved in multiple physiological and pathological processes Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles

4,241 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
22 Jan 2016-Science
TL;DR: In this paper, the oxygen reduction reaction (ORR) active site was characterized by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species.
Abstract: Nitrogen (N)-doped carbon materials exhibit high electrocatalytic activity for the oxygen reduction reaction (ORR), which is essential for several renewable energy systems. However, the ORR active site (or sites) is unclear, which retards further developments of high-performance catalysts. Here, we characterized the ORR active site by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species. The ORR active site is created by pyridinic N. Carbon dioxide adsorption experiments indicated that pyridinic N also creates Lewis basic sites. The specific activities per pyridinic N in the HOPG model catalysts are comparable with those of N-doped graphene powder catalysts. Thus, the ORR active sites in N-doped carbon materials are carbon atoms with Lewis basicity next to pyridinic N.

3,201 citations

Journal ArticleDOI
TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Abstract: The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core–shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

2,964 citations