scispace - formally typeset
Search or ask a question
Author

Dong Wang

Bio: Dong Wang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Scanning tunneling microscope & Medicine. The author has an hindex of 49, co-authored 491 publications receiving 9970 citations. Previous affiliations of Dong Wang include University of Science and Technology of China & Shanghai University.


Papers
More filters
Journal ArticleDOI
TL;DR: Both in vitro and in vivo studies demonstrate that nuclear miR-122 participates in the regulation of HCC cell apoptosis through modulating themiR-21-targeted programmed cell death 4 (PDCD4) signal pathway.
Abstract: Hepatic miR-122 can serve as a pro-apoptotic factor to suppress tumorigenesis. The underlying mechanism, however, remains incompletely understood. Here we present the first evidence that miR-122 promotes hepatocellular carcinoma cell apoptosis through directly silencing the biogenesis of cell survival oncomiR miR-21 at posttranscriptional level. We find that miR-122 is strongly expressed in primary liver cell nucleus but its nuclear localization is markedly decreased in transformed cells particularly in chemoresistant tumor cells. MiRNA profiling and RT-qPCR confirm an inverse correlation between miR-122 and miR-21 in hepatocellular carcinoma tissues/cells, and increasing or decreasing nuclear level of miR-122 respectively reduces or increases miR-21 expression. Mechanistically, nuclear miR-122 suppresses miR-21 maturation via binding to a 19-nt UG-containing recognition element in the basal region of pri-miR-21 and preventing the Drosha-DGCR8 microprocessor's conversion of pri-miR-21 into pre-miR-21. Furthermore, both in vitro and in vivo studies demonstrate that nuclear miR-122 participates in the regulation of HCC cell apoptosis through modulating the miR-21-targeted programmed cell death 4 (PDCD4) signal pathway.

41 citations

Journal ArticleDOI
Jingyuan Ma1, Jie Ding1, Hui-Juan Yan1, Dong Wang1, Jin-Song Hu1 
TL;DR: The knowledge on the temperature-induced variations of microscopic photoelectrical properties of organic-inorganic hybrid perovskite materials, which may guide the development of strategies for improving their thermal stability, is advanced.
Abstract: Organic-inorganic halide perovskite materials are emerging as a new class of photoelectric materials for its low cost, easy preparation, and, especially, outstanding optoelectronic properties. Although tremendous efforts have been made on the regulation and optimization of perovskite materials and their microscopic electrical properties for high-efficiency solar cells, few reports focus on the evolution of electrical properties with temperature changes, especially at the microscopic scale, which will directly affect the device performances at varying temperatures. Here, we map the contact potential difference and photocurrent distribution of MAPbI3 at different temperatures in situ by Kelvin probe force microscopy and conductive atomic force microscopy, emphasizing the different influences of variable temperature and phase transition on the photoelectric properties of grains and grain boundaries (GBs). It is discovered that both the Fermi level and photocurrent decrease as the sample is heated from 30 to 80 °C gradually because of the variation of effective carrier concentration and the degradation of carrier mobility implicated by lattice vibration scattering. The difference between the Fermi level at GBs and that on the grains ascends first and then descends, peaking at 50 °C, near which MAPbI3 transforms from a tetragonal phase to a cubic phase. This peak is speculated as a comprehensive consequence of the increasing difference of the Fermi level of semiconductors with different doping concentrations and the converging properties of grains and GBs with the temperature rising because the lower ion activation energy of the cubic phase at higher temperatures facilitates greatly the ions' movement between grains and GB. The variation trend of the difference of the photocurrent is the same. These findings advance the knowledge on the temperature-induced variations of microscopic photoelectrical properties of organic-inorganic hybrid perovskite materials, which may guide the development of strategies for improving their thermal stability.

41 citations

Journal ArticleDOI
TL;DR: A facile protocol is developed for the direct observation and characterization of a single particle electrode during the lithium ion battery operation by using in situ AFM and the SEI formation on the LiNi0.5Mn1.5O4 particle cathode surface is found to be highly related to the exposed planes.

40 citations

Journal ArticleDOI
TL;DR: 18 new compounds were found to feature a diversity of highly oxygenated side chains, formed by hydrolysis of the C-20 sugar moiety followed by dehydration, dehydrogenation, epoxidation, hydroxylation, or methoxylation of the main saponins in the raw roots.
Abstract: The roots of Panax notoginseng, an important Chinese medicinal plant, have been used traditionally in both the raw and processed forms, due to the different chemical constituents and bioactivities found. Thirty-eight dammarane-type triterpenoid saponins were isolated from the steam-processed roots of P. notoginseng, including 18 new substances, namely, notoginsenosides SP1-SP18 (1-18). The structures of 1-18 were determined on the basis of spectroscopic analysis and acidic hydrolysis. The absolute configuration of the hydroxy group at C-24 in 1-4, 19, and 20 was determined in each case by Mo-2(AcO)(4)-induced circular dichroism. The new compounds were found to feature a diversity of highly oxygenated side chains, formed by hydrolysis of the C-20 sugar moiety followed by dehydration, dehydrogenation, epoxidation, hydroxylation, or methoxylation of the main saponins in the raw roots. The new saponins 1, 2, 6-8, 14, and 17 and the known compounds 20-27 showed promoting effects on the differentiation of PC12 cells, at a concentration of 10 mu M.

40 citations

Journal ArticleDOI
TL;DR: These wide-spectrum absorption IBs bring about more solar energy utilization to enhance solar thermal collection and photocatalytic degradation of methyl orange.
Abstract: Intermediate band (IB) materials are of great significance due to their superior solar absorption properties. Here, two IBs peaking at 0.88 and 1.33 eV are reported to be present in the forbidden gap of semiconducting SnS2 ( Eg = 2.21 eV) by doping titanium up to 6 atom % into the Sn site via a solid-state reaction at 923 K. The solid solution of Sn1- xTi xS2 is able to be formed, which is attributed to the isostructural structure of SnS2 and TiS2. These two IBs were detected in the UV-vis-NIR absorption spectra with the appearance of two additional absorption responses at the respective regions, which in good agreement with the conclusion of first-principles calculations. The valence band maximum (VBM) consists mostly of the S 3p state, and the conduction band minimum (CBM) is the hybrid state composing of Ti 3d (eg), S 3p, and Sn 5s, and the IBs are mainly the nondegenerate t2g states of Ti 3d orbitals. The electronic states of Ti 3d reveal a good ability to transfer electrons between metal and S atoms. These wide-spectrum absorption IBs bring about more solar energy utilization to enhance solar thermal collection and photocatalytic degradation of methyl orange.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material.
Abstract: Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively They are present in biological fluids and are involved in multiple physiological and pathological processes Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles

4,241 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
22 Jan 2016-Science
TL;DR: In this paper, the oxygen reduction reaction (ORR) active site was characterized by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species.
Abstract: Nitrogen (N)-doped carbon materials exhibit high electrocatalytic activity for the oxygen reduction reaction (ORR), which is essential for several renewable energy systems. However, the ORR active site (or sites) is unclear, which retards further developments of high-performance catalysts. Here, we characterized the ORR active site by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species. The ORR active site is created by pyridinic N. Carbon dioxide adsorption experiments indicated that pyridinic N also creates Lewis basic sites. The specific activities per pyridinic N in the HOPG model catalysts are comparable with those of N-doped graphene powder catalysts. Thus, the ORR active sites in N-doped carbon materials are carbon atoms with Lewis basicity next to pyridinic N.

3,201 citations

Journal ArticleDOI
TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Abstract: The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core–shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

2,964 citations