scispace - formally typeset
Search or ask a question
Author

Dong Wang

Bio: Dong Wang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Scanning tunneling microscope & Medicine. The author has an hindex of 49, co-authored 491 publications receiving 9970 citations. Previous affiliations of Dong Wang include University of Science and Technology of China & Shanghai University.


Papers
More filters
Journal ArticleDOI
TL;DR: The testing results show that the instrument is in good condition, and the Modulation Transfer Function (MTF) can achieve 0.18 at Nyquist frequency, so the HiRIC can achieve a well image on China first Mars exploration mission.
Abstract: The High-Resolution Imaging Camera (HiRIC) is one major payload of China’s first Mars exploration mission, and its main objective is to obtain the detailed observation images of the key areas on the Martian surface. In this paper, the leading group of HiRIC shows a full blueprint of the HiRIC. The HiRIC can achieve a high resolution (0.5 m at an altitude of 265 km) with a wide swath width of 9 km. The HiRIC adopts an Off-Axis Three-Mirror Astigmatic (TMA) optical system with a focal length of 4640 mm, an F-number of 12 and a Field of View (FOV) of 2° × 0.693°. In order to reduce the instrument weight, carbon-based material is widely used in the opto-mechanical structure which is in ultra-lightweight design, thus, a light-weight camera with a total mass of 42 kg is obtained. The Time Delay and Integration (TDI) Charge Coupled Devices (CCDs) and Complementary Metal-Oxide-Semiconductor Transistor (CMOS) detectors are all set on the imaging plane to achieve the push-broom imaging and frame imaging, respectively. And the high Signal-to-Noise Ratio (SNR) >100:1 can achieve in multi observation types for various scientific imaging tasks. After 4-year design and fabricate, the HiRIC has been assembly. The testing results show that the instrument is in good condition, and the Modulation Transfer Function (MTF) can achieve 0.18 at Nyquist frequency. The HiRIC can achieve a well image on China first Mars exploration mission.

29 citations

Journal ArticleDOI
TL;DR: The optical and electrical properties and the photodetection behavior of atomically thin RhI3 flakes exfoliated from bulk crystals are reported, showing superior air and thermal stability, as well as thickness-dependent bandgap from 1.1 (18L) to 1.4 eV (2L).
Abstract: The emerging 2D layered transition metal trihalides (MX3 ) have attracted extremely high interest given their exceptional structural and physical properties. Continuing to extend the library of 2D MX3 is essential for exploring new physical phenomena and enabling new functionality. Herein, the optical and electrical properties and the photodetection behavior of atomically thin RhI3 flakes exfoliated from bulk crystals are reported. This compound exhibits superior air and thermal stability, as well as thickness-dependent bandgap from 1.1 (18L) to 1.4 eV (2L). Field-effect transistors based on the few-layer RhI3 flakes display n-type semiconducting behavior with competitive mobility of 2.5 cm2 V-1 s-1 and ON/OFF current ratio of 4 × 104 . Importantly, the outstanding responsivity of 11.5 A W-1 and high specific detectivity of 2 × 1010 Jones are recorded from the RhI3 photodetectors under 980 nm illumination at room temperature in air. These findings indicate a variety of potential applications of atomically thin RhI3 flakes in future 2D-material-based electronic and optoelectronic devices.

28 citations

Journal ArticleDOI
Xiang Wang1, Yu-Qi Wang1, Ya-Chen Feng1, Dong Wang1, Li-Jun Wan1 
TL;DR: Progress in the application of STM in electrocatalysis is systematically discussed, and the STM investigation of electrocatalyst structures and surface processes related to electrocatalytic reactions is presented.
Abstract: Understanding the mechanism of electrocatalytic reaction is important for the design and development of highly efficient electrocatalysts for energy technology. Investigating the surface structures of electrocatalysts and the surface processes in electrocatalytic reactions at the atomic and molecular scale is helpful to identify the catalytic role of active sites and further promotes the development of emerging electrocatalysts. Since it was invented, scanning tunnelling microscopy (STM) has become a powerful technique to investigate surface topographies and electronic properties at the nanoscale resolution. STM can be operated in diversified environments. Electrochemical STM can be used to investigate the surface processes during electrochemical reactions. Moreover, the critical intermediates in catalysis on catalyst surfaces can be identified by STM at low temperature or ultrahigh vacuum. STM has been extensively utilized in electrocatalysis research, including the structure–activity relationship of electrocatalysts, the distribution of active sites, and surface processes in electrocatalytic reactions. In this review, progress in the application of STM in electrocatalysis is systematically discussed. The construction of model electrocatalysts and electrocatalytic systems are summarized. Then, we present the STM investigation of electrocatalyst structures and surface processes related to electrocatalysis. Challenges and future developments in the field are discussed in the outlook.

28 citations

Journal ArticleDOI
TL;DR: The results indicated that C. sinensis var.
Abstract: Camellia sinensis var. pubilimba, one variety of the genus Camellia sect. Thea (Theaceae), has been used for producing green tea mainly by the local people of its growing areas of Guangxi province, China. Forty compounds, including eight C-8 N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (1-8) and their substituted unit N-ethyl-5-hydroxy-2-pyrrolidinone (9), four flavan-3-ol monomers (10-13) and one dimer (14), nine flavonoids (15-23), three hydrolyzable tannins (24-26), two lignans (27-28), 11 simple phenolics (29-39), and caffeine (40), were first isolated and identified from the leaves. Their structures were determined by detailed spectroscopic analysis and comparison with the literature data and authentic samples. Both 1 and 4 were obtained as a mixture of the N-ethyl-2-pyrrolidinone C-5 enantiomers (1a and 1b and 4a and 4b), respectively, while the resolution of another three pairs of enantiomers (2 and 3, 5 and 6, and 7 and 8) was achieved. Among them, 1b is a new compound whose NMR data together with its enantiomer (1a) were reported for the first time, while 2 and 3 are two new natural products. Most of the isolates exhibited significant antioxidant activities, stronger than ascorbic acid and trolox, while parts of the isolates, particularly C-8 N-ethyl-2-pyrrolidinone-substituted flavan-3-ols, showed obvious inhibitory effects on acetylcholinesterase (AChE). The results indicated that C. sinensis var. pubilimba is a valuable plant resource for tea production.

28 citations

Journal ArticleDOI
TL;DR: Tetrahydropyran compounds can be directly synthesized from allylbromide and carbonyl compounds by means of one-pot Babier-Prins cyclization promoted by BPyX/SnX′2 or BBIMBr/SnBr2 under solvent-free conditions as mentioned in this paper.

28 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material.
Abstract: Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively They are present in biological fluids and are involved in multiple physiological and pathological processes Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles

4,241 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
22 Jan 2016-Science
TL;DR: In this paper, the oxygen reduction reaction (ORR) active site was characterized by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species.
Abstract: Nitrogen (N)-doped carbon materials exhibit high electrocatalytic activity for the oxygen reduction reaction (ORR), which is essential for several renewable energy systems. However, the ORR active site (or sites) is unclear, which retards further developments of high-performance catalysts. Here, we characterized the ORR active site by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species. The ORR active site is created by pyridinic N. Carbon dioxide adsorption experiments indicated that pyridinic N also creates Lewis basic sites. The specific activities per pyridinic N in the HOPG model catalysts are comparable with those of N-doped graphene powder catalysts. Thus, the ORR active sites in N-doped carbon materials are carbon atoms with Lewis basicity next to pyridinic N.

3,201 citations

Journal ArticleDOI
TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Abstract: The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core–shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

2,964 citations