scispace - formally typeset
Search or ask a question
Author

Dong Wang

Bio: Dong Wang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Scanning tunneling microscope & Medicine. The author has an hindex of 49, co-authored 491 publications receiving 9970 citations. Previous affiliations of Dong Wang include University of Science and Technology of China & Shanghai University.


Papers
More filters
Journal ArticleDOI
TL;DR: Results suggest that these isolated ursane-type triterpenoid acids and anthraquinone are potential allelochemicals that contribute to continuous-cropping obstacles of P. notoginseng.

14 citations

Journal ArticleDOI
TL;DR: The results demonstrated that the all-carbon electrode structure was effective for charge separation and a sensitive and stable photocurrent signal could be produced in such a device.
Abstract: In this work, we described a facile route for the fabrication of free-standing single-walled carbon nanotubes (SWCNT)–CdSe quantum dots (QDs) hybrid ultrathin films and investigated their optoelectronic conversion properties. A free-standing SWCNT film with thickness of ∼36 nm was firstly prepared via vacuum filtration. The film was then immersed into the pre-synthesized oleic acid-capped CdSe QDs (average diameter of 3.5 nm) solution, where CdSe QDs anchored spontaneously onto the surface of SWCNT film to produce SWCNT–CdSe QDs hybrid film. By using pure SWCNT films in different thicknesses as bottom and top electrodes, a flexible all-carbon electrode optoelectronic conversion device with sandwich structure of SWCNT film (thickness of ∼200 nm)/SWCNT–CdSe QDs hybrid film (thickness of ∼36 nm)/SWCNT film (thickness of ∼36 nm) was constructed to generate optoelectronic conversion under illumination of solar-simulated light. Our results demonstrated that the all-carbon electrode structure was effective for charge separation and a sensitive and stable photocurrent signal could be produced in such a device. In addition, our SWCNT–CdSe QDs hybrid film exhibited high flexibility and durability. No clear change in the resistance of the film was detected under bending in various bending angles.

14 citations

Journal ArticleDOI
TL;DR: In this paper, a microwave-enhanced EVA film swelling and separation for PV panels recycling was innovatively proposed, and the results showed that the separation speed of different layers in microwave can be significantly accelerated.

14 citations

Journal ArticleDOI
TL;DR: An ammonium iodide/hydrogen peroxide-mediated intramolecular oxidative amination of 3-aminoalkyl-2-oxindoles was achieved, affording the corresponding 3,2′-pyrrolidinyl spirooxindole and their 6- or 7-membered analogous in moderate to high yields.
Abstract: An ammonium iodide/hydrogen peroxide-mediated intramolecular oxidative amination of 3-aminoalkyl-2-oxindoles was achieved, affording the corresponding 3,2′-pyrrolidinyl spirooxindoles and their 6- or 7-membered analogous in moderate to high yields. This metal-free procedure features very mild reaction conditions, non-toxicity and easily handled hydrogen peroxide as a clean oxidant.

14 citations

Journal ArticleDOI
TL;DR: In this article, a pyrochlore phase anode material, Ce2Sn2O7, was proposed, which shows atomic Sn confined in a conductive 3D percolating Ce-O framework.
Abstract: In the search of high-performance anode materials for next-generation Li-ion batteries, more efforts are needed on new structural prototypes. Motivated by the negative thermal expansion effect in a loosely packed crystal structure type, we are intrigued by the possibility of exploiting new anode materials in a suitable phase structure with much-reduced intrinsic volume strain. Herein, we report a new pyrochlore phase anode material, Ce2Sn2O7, which shows atomic Sn confined in a conductive 3D percolating Ce–O framework. Based on the concept of structural openness, pyrochlore Ce2Sn2O7 possesses open structures to tolerate the volume change. Notably, the Ce–O network is quite robust against the charge/discharge process, which accounts for the high structural stability observed in the experiment. Ultimately, Ce2Sn2O7 electrodes achieve a capacity as high as 631.1 mA h g−1 and excellent cycling stability. This atom-confining strategy of atomic Sn in the conductive 3D percolating Ce–O framework might be exploited as a general strategy for reducing cycling strain in ion-storage materials.

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material.
Abstract: Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively They are present in biological fluids and are involved in multiple physiological and pathological processes Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles

4,241 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
22 Jan 2016-Science
TL;DR: In this paper, the oxygen reduction reaction (ORR) active site was characterized by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species.
Abstract: Nitrogen (N)-doped carbon materials exhibit high electrocatalytic activity for the oxygen reduction reaction (ORR), which is essential for several renewable energy systems. However, the ORR active site (or sites) is unclear, which retards further developments of high-performance catalysts. Here, we characterized the ORR active site by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species. The ORR active site is created by pyridinic N. Carbon dioxide adsorption experiments indicated that pyridinic N also creates Lewis basic sites. The specific activities per pyridinic N in the HOPG model catalysts are comparable with those of N-doped graphene powder catalysts. Thus, the ORR active sites in N-doped carbon materials are carbon atoms with Lewis basicity next to pyridinic N.

3,201 citations

Journal ArticleDOI
TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Abstract: The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core–shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

2,964 citations