scispace - formally typeset
Search or ask a question
Author

Dong Wang

Bio: Dong Wang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Scanning tunneling microscope & Medicine. The author has an hindex of 49, co-authored 491 publications receiving 9970 citations. Previous affiliations of Dong Wang include University of Science and Technology of China & Shanghai University.


Papers
More filters
Journal ArticleDOI
TL;DR: Deprotonation of (benzyl methyl ether)tricarbonylchromium(0) complex by chiral base 2 followed by quenching reaction with imines 3 and subsequent decomplexation give β-amino alcohol derivatives 5 as mentioned in this paper.
Abstract: Deprotonation of (benzyl methyl ether)tricarbonylchromium(0) complex 1 by chiral base 2 followed by quenching reaction with imines 3 and subsequent decomplexation give β-amino alcohol derivatives 5...

2 citations

Journal ArticleDOI
03 Sep 2021
TL;DR: In this article, a simple but effective synthetic strategy has been developed using an irreversible Bronsted acid-catalyzed aldol cyclotrimerization reaction by virtue of truxene as a linkage.
Abstract: The synthesis of new C–C bonded two-dimensional (2D) covalent organic frameworks (COFs) is highly desirable. Here, a simple but effective synthetic strategy has been developed using an irreversible Bronsted acid-catalyzed aldol cyclotrimerization reaction by virtue of truxene as a linkage. Nonolefin C–C bonded 2D truxene-based covalent organic frameworks (Tru-COFs) were constructed by polymerization of 1,3,5-triindanonebenzene (TDB). The structure formation was confirmed by wide-angle X-ray scattering, Fourier-transform infrared spectroscopy, and solid-state 13C CP/MAS NMR. The results showed that the Tru-COFs were porous (645 m2/g) and chemically stable. Benzyl methylene in conjugated Tru-COFs more effectively produced photoinduced radicals than the model truxene compound. Due to the radical photoresponsiveness, Tru-COFs were efficient catalysts for photocatalytic oxidation of sulfides. We expect that this will provide a new synthetic methodology to obtain C–C bonded functional 2D COFs.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors used UAVs to collect high-resolution multispectral imagery in a pomegranate orchard located at the USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA.
Abstract: Abstract Evapotranspiration (ET) estimation is important in precision agriculture water management, such as evaluating soil moisture, drought monitoring, and assessing crop water stress. As a traditional method, evapotranspiration estimation using crop coefficient ( K c ) has been commonly used. Since there are strong similarities between the K c curve and the vegetation index curve, the crop coefficient K c is usually estimated as a function of the vegetation index. Researchers have developed linear regression models for the K c and the normalized difference vegetation index (NDVI), usually derived from satellite imagery. However, the spatial resolution of the satellite image is often insufficient for crops with clumped canopy structures, such as vines and trees. Therefore, in this article, the authors used Unmanned Aerial Vehicles (UAVs) to collect high-resolution multispectral imagery in a pomegranate orchard located at the USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA. The K c values were measured from a weighing lysimeter and the NDVI values were derived from UAV imagery. Then, the authors established a relationship between the NDVI and K c by using a linear regression model and a stochastic configuration networks (SCN) model, respectively. Based on the research results, the linear regression model has an R 2 of 0.975 and RMSE of 0.05. The SCN regression model has an R 2 and RMSE value of 0.995 and 0.046, respectively. Compared with the linear regression model, the SCN model improved performance in predicting K c from NDVI. Then, actual evapotranspiration was estimated and compared with lysimeter data in an experimental pomegranate orchard. The UAV imagery provided a spatial and tree-by-tree view of ET distribution.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material.
Abstract: Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively They are present in biological fluids and are involved in multiple physiological and pathological processes Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles

4,241 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
22 Jan 2016-Science
TL;DR: In this paper, the oxygen reduction reaction (ORR) active site was characterized by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species.
Abstract: Nitrogen (N)-doped carbon materials exhibit high electrocatalytic activity for the oxygen reduction reaction (ORR), which is essential for several renewable energy systems. However, the ORR active site (or sites) is unclear, which retards further developments of high-performance catalysts. Here, we characterized the ORR active site by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species. The ORR active site is created by pyridinic N. Carbon dioxide adsorption experiments indicated that pyridinic N also creates Lewis basic sites. The specific activities per pyridinic N in the HOPG model catalysts are comparable with those of N-doped graphene powder catalysts. Thus, the ORR active sites in N-doped carbon materials are carbon atoms with Lewis basicity next to pyridinic N.

3,201 citations

Journal ArticleDOI
TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Abstract: The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core–shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

2,964 citations