scispace - formally typeset
Search or ask a question
Author

Dongke Zhang

Bio: Dongke Zhang is an academic researcher from University of Western Australia. The author has contributed to research in topics: Coal & Combustion. The author has an hindex of 52, co-authored 363 publications receiving 11293 citations. Previous affiliations of Dongke Zhang include Curtin University & Southeast University.
Topics: Coal, Combustion, Char, Ignition system, Pyrolysis


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the current state of knowledge and technology of hydrogen production by water electrolysis and identifies areas where R&D effort is needed in order to improve this technology.

2,396 citations

Journal ArticleDOI
TL;DR: A review of the current status of mathematical modelling studies of biomass pyrolysis with the aim to identify knowledge gaps for further research and opportunities for integration of biometer-level models of disparate scales is provided in this paper.
Abstract: Biomass as a form of energy source may be utilized in two different ways: directly by burning the biomass and indirectly by converting it into solid, liquid or gaseous fuels. Pyrolysis is an indirect conversion method, and can be described in simpler terms as a thermal decomposition of biomass under oxygen-depleted conditions to an array of solid, liquid and gaseous products, namely biochar, bio-oil and fuel gas. However, pyrolysis of biomass is a complex chemical process with several operational and environmental challenges. Consequently, this process has been widely investigated in order to understand the mechanisms and kinetics of pyrolysis at different scales, viz. particle level, multi-phase reacting flow, product distribution and reactor performance, process integration and control. However, there are a number of uncertainties in current biomass pyrolysis models, especially in their ability to optimize process conditions to achieve desired product yields and distribution. The present contribution provides a critical review of the current status of mathematical modelling studies of biomass pyrolysis with the aim to identify knowledge gaps for further research and opportunities for integration of biomass pyrolysis models of disparate scales. Models for the hydrodynamic behaviour of particles in pyrolysis, and their interaction with the reactive flow and the effect on the performance of the reactors have also been critically analyzed. From this analysis it becomes apparent that feedstock characteristics, evolving physical and chemical properties of biomass particles and residence times of both solid and gas phases in reactors hold the key to the desired performance of the pyrolysis process. Finally, the importance of catalytic effects in pyrolysis has also been critically analyzed, resulting in recommendations for further research in this area especially on selection of catalysts for optimal product yields under varying operating conditions.

425 citations

Journal ArticleDOI
01 Sep 1998-Fuel
TL;DR: In this article, an experimental gasification study of Bowmans coal with steam and with carbon dioxide in a single-particle reactor operating at atmospheric pressure and at temperatures between 714 and 892°C was conducted.

335 citations

Journal ArticleDOI
TL;DR: In this article, the potential of ultrasound as a pretreatment and fractionation method of lignocellulose was evaluated and the challenges that this technology faces were identified, and the current status-quo of knowledge of the parametric effects of ultrasound was identified.
Abstract: The conversion of lignocellulosic biomass for biofuels and biorefinery applications is limited due to the cost of pretreatment to separate or access the biomass’s three main usable components, cellulose, hemicellulose, and lignin. After pretreatment, each component may be utilized via chemical conversion, hydrolysis, and/or fermentation. In this review we aim first, to identify the current status-quo of knowledge of the parametric effects of ultrasound, second, to evaluate the potential of ultrasound as a pretreatment and fractionation method of lignocellulose, and last, to identify the challenges that this technology faces. Ultrasound produces chemical and physical effects which were both found to augment the pretreatment of lignocellulose via delignification and surface erosion. The magnitudes of these effects are altered when the ultrasonic field is influenced by parameters such as solvent, ultrasonic frequency, and reactor geometry and type. Therefore, the implementation of ultrasound for the pretreat...

273 citations

Journal ArticleDOI
TL;DR: In this article, the effectiveness of removing ammonium ion and the theoretical aspects of adsorption including adaption isotherm, kinetics and thermodynamics as well as desorption-regeneration studies.

264 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting.
Abstract: There is still an ongoing effort to search for sustainable, clean and highly efficient energy generation to satisfy the energy needs of modern society. Among various advanced technologies, electrocatalysis for the oxygen evolution reaction (OER) plays a key role and numerous new electrocatalysts have been developed to improve the efficiency of gas evolution. Along the way, enormous effort has been devoted to finding high-performance electrocatalysts, which has also stimulated the invention of new techniques to investigate the properties of materials or the fundamental mechanism of the OER. This accumulated knowledge not only establishes the foundation of the mechanism of the OER, but also points out the important criteria for a good electrocatalyst based on a variety of studies. Even though it may be difficult to include all cases, the aim of this review is to inspect the current progress and offer a comprehensive insight toward the OER. This review begins with examining the theoretical principles of electrode kinetics and some measurement criteria for achieving a fair evaluation among the catalysts. The second part of this review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting. Attention of this review is also paid to in situ approaches to electrocatalytic behavior during OER, and this information is crucial and can provide efficient strategies to design perfect electrocatalysts for OER. Finally, the OER mechanism from the perspective of both recent experimental and theoretical investigations is discussed, as well as probable strategies for improving OER performance with regards to future developments.

3,976 citations

Journal ArticleDOI
TL;DR: Renewable Resources Robert-Jan van Putten,†,‡ Jan C. van der Waal,† Ed de Jong,*,† Carolus B. Rasrendra,*,⊥ Hero J. Heeres,*,‡ and Johannes G. de Vries.
Abstract: Renewable Resources Robert-Jan van Putten,†,‡ Jan C. van der Waal,† Ed de Jong,*,† Carolus B. Rasrendra,‡,⊥ Hero J. Heeres,*,‡ and Johannes G. de Vries* †Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands ‡Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands DSM Innovative Synthesis BV, P.O. Box 18, 6160 MD Geleen, the Netherlands Department of Chemical Engineering, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia

2,267 citations

Journal ArticleDOI
26 Sep 2014-Science
TL;DR: It is shown that a pair of perovskite cells connected in series can power the electrochemical breakdown of water into hydrogen and oxygen efficiently, and the combination of the two yields a water-splitting photocurrent density and a solar-to-hydrogen efficiency of 12.3%.
Abstract: Although sunlight-driven water splitting is a promising route to sustainable hydrogen fuel production, widespread implementation is hampered by the expense of the necessary photovoltaic and photoelectrochemical apparatus. Here, we describe a highly efficient and low-cost water-splitting cell combining a state-of-the-art solution-processed perovskite tandem solar cell and a bifunctional Earth-abundant catalyst. The catalyst electrode, a NiFe layered double hydroxide, exhibits high activity toward both the oxygen and hydrogen evolution reactions in alkaline electrolyte. The combination of the two yields a water-splitting photocurrent density of around 10 milliamperes per square centimeter, corresponding to a solar-to-hydrogen efficiency of 12.3%. Currently, the perovskite instability limits the cell lifetime.

2,140 citations

Journal ArticleDOI
TL;DR: In this article, the utilization of fly ash in construction, as a low-cost adsorbent for the removal of organic compounds, flue gas and metals, light weight aggregate, mine back fill, road sub-base, and zeolite synthesis is discussed.

2,117 citations

Journal ArticleDOI
TL;DR: Current progress in this field is summarized here, especially highlighting several important bifunctional catalysts, and various approaches to improve or optimize the electrocatalysts are introduced.
Abstract: Water electrolysis is considered as the most promising technology for hydrogen production. Much research has been devoted to developing efficient electrocatalysts for hydrogen production via the hydrogen evolution reaction (HER) and oxygen production via the oxygen evolution reaction (OER). The optimum electrocatalysts can drive down the energy costs needed for water splitting via lowering the overpotential. A number of cobalt (Co)-based materials have been developed over past years as non-noble-metal heterogeneous electrocatalysts for HER and OER. Recent progress in this field is summarized here, especially highlighting several important bifunctional catalysts. Various approaches to improve or optimize the electrocatalysts are introduced. Finally, the current existing challenges and the future working directions for enhancing the performance of Co-implicated electrocatalysts are proposed.

1,963 citations