scispace - formally typeset
Search or ask a question
Author

Dongliang Zhao

Bio: Dongliang Zhao is an academic researcher from Southeast University. The author has contributed to research in topics: Radiative cooling & Radiative transfer. The author has an hindex of 24, co-authored 41 publications receiving 3107 citations. Previous affiliations of Dongliang Zhao include Chinese Ministry of Education & University of Colorado Boulder.

Papers
More filters
Journal ArticleDOI
10 Mar 2017-Science
TL;DR: A metamaterial composed of a polymer layer embedded with microspheres, backed with a thin layer of silver, which shows a noontime radiative cooling power of 93 watts per square meter under direct sunshine is constructed.
Abstract: Passive radiative cooling draws heat from surfaces and radiates it into space as infrared radiation to which the atmosphere is transparent. However, the energy density mismatch between solar irradiance and the low infrared radiation flux from a near-ambient-temperature surface requires materials that strongly emit thermal energy and barely absorb sunlight. We embedded resonant polar dielectric microspheres randomly in a polymeric matrix, resulting in a metamaterial that is fully transparent to the solar spectrum while having an infrared emissivity greater than 0.93 across the atmospheric window. When backed with a silver coating, the metamaterial shows a noontime radiative cooling power of 93 watts per square meter under direct sunshine. More critically, we demonstrated high-throughput, economical roll-to-roll manufacturing of the metamaterial, which is vital for promoting radiative cooling as a viable energy technology.

1,278 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the recent advances of thermoelectric materials, modeling approaches, and applications, and summarized the achievements in past decade have been summarized and the modeling techniques have been described for both the thermoelement modeling and TEC modeling.

593 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental principles of radiative sky cooling as well as the recent advances, from both materials and systems point of view, are reviewed with special attention to technology viability and benefits.
Abstract: Radiative sky cooling cools an object on the earth by emitting thermal infrared radiation to the cold universe through the atmospheric window (8–13 μm). It consumes no electricity and has great potential to be explored for cooling of buildings, vehicles, solar cells, and even thermal power plants. Radiative sky cooling has been explored in the past few decades but limited to nighttime use only. Very recently, owing to the progress in nanophotonics and metamaterials, daytime radiative sky cooling to achieve subambient temperatures under direct sunlight has been experimentally demonstrated. More excitingly, the manufacturing of the daytime radiative sky cooling material by the roll-to-roll process makes large-scale deployment of the technology possible. This work reviews the fundamental principles of radiative sky cooling as well as the recent advances, from both materials and systems point of view. Potential applications in different scenarios are reviewed with special attention to technology viability and benefits. As the energy situation and environmental issues become more and more severe in the 21st century, radiative sky cooling can be explored for energy saving in buildings and vehicles, mitigating the urban heat island effect, resolving water and environmental issues, achieving more efficient power generation, and even fighting against the global warming problem.

366 citations

Journal ArticleDOI
TL;DR: In this article, a review of the most commonly used measurement techniques for thermal conductivity and interfacial thermal conductance is presented, including the 3-omega method and transient plane source method.
Abstract: Thermal conductivity and interfacial thermal conductance play crucial roles in the design of engineering systems where temperature and thermal stress are of concerns. To date, a variety of measurement techniques are available for both bulk and thin film solid-state materials with a broad temperature range. For thermal characterization of bulk material, the steady-state absolute method, laser flash diffusivity method, and transient plane source method are most used. For thin film measurement, the 3{\omega} method and transient thermoreflectance technique including both frequency-domain and time-domain analysis are employed widely. This work reviews several most commonly used measurement techniques. In general, it is a very challenging task to determine thermal conductivity and interface contact resistance with less than 5% error. Selecting a specific measurement technique to characterize thermal properties need to be based on: 1) knowledge on the sample whose thermophysical properties is to be determined, including the sample geometry and size, and preparation method; 2) understanding of fundamentals and procedures of the testing technique and equipment, for example, some techniques are limited to samples with specific geometrics and some are limited to specific range of thermophysical properties; 3) understanding of the potential error sources which might affect the final results, for example, the convection and radiation heat losses.

306 citations

Journal ArticleDOI
16 Jan 2019-Joule
TL;DR: In this paper, a radiative cooled-cold collection (RadiCold) module is developed to cool water to 10.6°C below ambient at noon under stationary conditions, and the effects of different weather conditions (wind speed, precipitable water, and cloud cover) on the performance of radiative cooling have been investigated.

298 citations


Cited by
More filters
Journal ArticleDOI
03 Apr 2015-Science
TL;DR: A dramatic improvement of efficiency is shown in bismuth telluride samples by quickly squeezing out excess liquid during compaction, which presents an attractive path forward for thermoelectrics.
Abstract: The widespread use of thermoelectric technology is constrained by a relatively low conversion efficiency of the bulk alloys, which is evaluated in terms of a dimensionless figure of merit ( zT ). The zT of bulk alloys can be improved by reducing lattice thermal conductivity through grain boundary and point-defect scattering, which target low- and high-frequency phonons. Dense dislocation arrays formed at low-energy grain boundaries by liquid-phase compaction in Bi 0.5 Sb 1.5 Te 3 (bismuth antimony telluride) effectively scatter midfrequency phonons, leading to a substantially lower lattice thermal conductivity. Full-spectrum phonon scattering with minimal charge-carrier scattering dramatically improved the zT to 1.86 ± 0.15 at 320 kelvin (K). Further, a thermoelectric cooler confirmed the performance with a maximum temperature difference of 81 K, which is much higher than current commercial Peltier cooling devices.

1,429 citations

Journal ArticleDOI
19 Oct 2018-Science
TL;DR: A simple, inexpensive, and scalable phase inversion–based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP)HP] coatings with excellent PDRC capability, which equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.
Abstract: Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion-based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP)HP] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m-2) under solar intensities of 890 and 750 W m-2, respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.

938 citations

Journal ArticleDOI
TL;DR: The need of solar industry with its fundamental concepts, worlds energy scenario, highlights of researches done to upgrade solar industry, its potential applications and barriers for better solar industry in future in order to resolve energy crisis as mentioned in this paper.
Abstract: World׳s energy demand is growing fast because of population explosion and technological advancements. It is therefore important to go for reliable, cost effective and everlasting renewable energy source for energy demand arising in future. Solar energy, among other renewable sources of energy, is a promising and freely available energy source for managing long term issues in energy crisis. Solar industry is developing steadily all over the world because of the high demand for energy while major energy source, fossil fuel, is limited and other sources are expensive. It has become a tool to develop economic status of developing countries and to sustain the lives of many underprivileged people as it is now cost effective after a long aggressive researches done to expedite its development. The solar industry would definitely be a best option for future energy demand since it is superior in terms of availability, cost effectiveness, accessibility, capacity and efficiency compared to other renewable energy sources. This paper therefore discusses about the need of solar industry with its fundamental concepts, worlds energy scenario, highlights of researches done to upgrade solar industry, its potential applications and barriers for better solar industry in future in order to resolve energy crisis.

894 citations

Journal ArticleDOI
24 May 2019-Science
TL;DR: By a process of complete delignification and densification of wood, a structural material with a mechanical strength of 404.3 megapascals is developed, more than eight times that of natural wood, resulting in continuous subambient cooling during both day and night.
Abstract: Reducing human reliance on energy-inefficient cooling methods such as air conditioning would have a large impact on the global energy landscape. By a process of complete delignification and densification of wood, we developed a structural material with a mechanical strength of 404.3 megapascals, more than eight times that of natural wood. The cellulose nanofibers in our engineered material backscatter solar radiation and emit strongly in mid-infrared wavelengths, resulting in continuous subambient cooling during both day and night. We model the potential impact of our cooling wood and find energy savings between 20 and 60%, which is most pronounced in hot and dry climates.

710 citations

Journal ArticleDOI
TL;DR: In this article, an effective battery thermal management system solution is discussed in terms of the maximum temperature and maximum temperature difference of the batteries and an effective BTMS that complements the disadvantages of each system is discussed.

585 citations