scispace - formally typeset
Search or ask a question
Author

Dongyun Jin

Other affiliations: Samsung
Bio: Dongyun Jin is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Runtime verification & Parametric statistics. The author has an hindex of 11, co-authored 14 publications receiving 649 citations. Previous affiliations of Dongyun Jin include Samsung.

Papers
More filters
Journal ArticleDOI
01 Jun 2012
TL;DR: An overview of the, monitoring oriented programming framework (MOP), and an explanation of parametric trace monitoring and its implementation is given.
Abstract: This article gives an overview of the, monitoring oriented programming framework (MOP). In MOP, runtime monitoring is supported and encouraged as a fundamental principle for building reliable systems. Monitors are automatically synthesized from specified properties and are used in conjunction with the original system to check its dynamic behaviors. When a specification is violated or validated at runtime, user-defined actions will be triggered, which can be any code, such as information logging or runtime recovery. Two instances of MOP are presented: JavaMOP (for Java programs) and BusMOP (for monitoring PCI bus traffic). The architecture of MOP is discussed, and an explanation of parametric trace monitoring and its implementation is given. A comprehensive evaluation of JavaMOP attests to its efficiency, especially in comparison with similar systems. The implementation of BusMOP is discussed in detail. In general, BusMOP imposes no runtime overhead on the system it is monitoring.

256 citations

Proceedings ArticleDOI
02 Jun 2012
TL;DR: Here a demonstration of the only parametric monitoring system that allows multiple differing logical formalisms is given, JavaMOP, which is the most efficient in terms of runtime overhead, and very competitive with respect to memory usage.
Abstract: Runtime monitoring is a technique usable in all phases of the software development cycle, from initial testing, to debugging, to actually maintaining proper function in production code. Of particular importance are parametric monitoring systems, which allow the specification of properties that relate objects in a program, rather than only global properties. In the past decade, a number of parametric runtime monitoring systems have been developed. Here we give a demonstration of our system, JavaMOP. It is the only parametric monitoring system that allows multiple differing logical formalisms. It is also the most efficient in terms of runtime overhead, and very competitive with respect to memory usage.

87 citations

Book ChapterDOI
22 Sep 2014
TL;DR: More than 150 formal specifications manually derived from the Java API documentation of commonly used packages, as well as a series of novel techniques which resulted in a new runtime verification system, RV-Monitor, which is capable of monitoring all its specifications simultaneously and runs substantially faster than other state-of-the-art runtime verification systems.
Abstract: Runtime verification can effectively increase the reliability of software systems. In recent years, parametric runtime verification has gained a lot of traction, with several systems proposed. However, lack of real specifications and prohibitive runtime overhead when checking numerous properties simultaneously prevent developers or users from using runtime verification. This paper reports on more than 150 formal specifications manually derived from the Java API documentation of commonly used packages, as well as a series of novel techniques which resulted in a new runtime verification system, RV-Monitor. Experiments show that these specifications are useful for finding bugs and bad software practice, and RV-Monitor is capable of monitoring all our specifications simultaneously, and runs substantially faster than other state-of-the-art runtime verification systems.

64 citations

Journal ArticleDOI
15 Sep 2008
TL;DR: This paper presents a monitor synthesis algorithm for CFGs based on an LR(1) parsing algorithm, modified to account for good prefix matching, and introduces a logic-independent mechanism to support matching against the suffixes of execution traces.
Abstract: Recent developments in runtime verification and monitoring show that parametric regular and temporal logic specifications can be efficiently monitored against large programs. However, these logics reduce to ordinary finite automata, limiting their expressivity. For example, neither can specify structured properties that refer to the call stack of the program. While context-free grammars (CFGs) are expressive and well-understood, existing techniques for monitoring CFGs generate large runtime overhead in real-life applications. This paper shows, for the first time, that monitoring parametric CFGs is practical (with overhead on the order of 10% or lower for average cases, several times faster than the state-of-the-art). We present a monitor synthesis algorithm for CFGs based on an LR(1) parsing algorithm, modified with stack cloning to account for good prefix matching. In addition, a logic-independent mechanism is introduced to support matching against the suffixes of execution traces.

57 citations

Proceedings ArticleDOI
09 Sep 2011
TL;DR: IMUnit is presented, a novel approach to specifying and executing schedules for multithreaded tests, a new language that allows explicit specification of schedules as orderings on events encountered during test execution, and a tool that helps developers migrate their legacy, sleep- based tests into event-based tests in IMUnit.
Abstract: Multithreaded code is notoriously hard to develop and test. A multithreaded test exercises the code under test with two or more threads. Each test execution follows some schedule/interleaving of the multiple threads, and different schedules can give different results. Developers often want to enforce a particular schedule for test execution, and to do so, they use time delays (Thread.sleep in Java). Unfortunately, this approach can produce false positives or negatives, and can result in unnecessarily long testing time.This paper presents IMUnit, a novel approach to specifying and executing schedules for multithreaded tests. We introduce a new language that allows explicit specification of schedules as orderings on events encountered during test execution. We present a tool that automatically instruments the code to control test execution to follow the specified schedule, and a tool that helps developers migrate their legacy, sleep-based tests into event-based tests in IMUnit. The migration tool uses novel techniques for inferring events and schedules from the executions of sleep-based tests. We describe our experience in migrating over 200 tests. The inference techniques have high precision and recall of over 75%, and IMUnit reduces testing time compared to sleep-based tests on average 3.39x.

55 citations


Cited by
More filters
Journal Article
TL;DR: AspectJ as mentioned in this paper is a simple and practical aspect-oriented extension to Java with just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns.
Abstract: Aspect] is a simple and practical aspect-oriented extension to Java With just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns. In AspectJ's dynamic join point model, join points are well-defined points in the execution of the program; pointcuts are collections of join points; advice are special method-like constructs that can be attached to pointcuts; and aspects are modular units of crosscutting implementation, comprising pointcuts, advice, and ordinary Java member declarations. AspectJ code is compiled into standard Java bytecode. Simple extensions to existing Java development environments make it possible to browse the crosscutting structure of aspects in the same kind of way as one browses the inheritance structure of classes. Several examples show that AspectJ is powerful, and that programs written using it are easy to understand.

2,947 citations

01 Jan 2009
TL;DR: This paper presents a meta-modelling framework for modeling and testing the robustness of the modeled systems and some of the techniques used in this framework have been developed and tested in the field.
Abstract: ing WS1S Systems to Verify Parameterized Networks . . . . . . . . . . . . 188 Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl FMona: A Tool for Expressing Validation Techniques over Infinite State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 J.-P. Bodeveix and M. Filali Transitive Closures of Regular Relations for Verifying Infinite-State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Bengt Jonsson and Marcus Nilsson Diagnostic and Test Generation Using Static Analysis to Improve Automatic Test Generation . . . . . . . . . . . . . 235 Marius Bozga, Jean-Claude Fernandez and Lucian Ghirvu Efficient Diagnostic Generation for Boolean Equation Systems . . . . . . . . . . . . 251 Radu Mateescu Efficient Model-Checking Compositional State Space Generation with Partial Order Reductions for Asynchronous Communicating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Jean-Pierre Krimm and Laurent Mounier Checking for CFFD-Preorder with Tester Processes . . . . . . . . . . . . . . . . . . . . . . . 283 Juhana Helovuo and Antti Valmari Fair Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Thomas A. Henzinger and Sriram K. Rajamani Integrating Low Level Symmetries into Reachability Analysis . . . . . . . . . . . . . 315 Karsten Schmidt Model-Checking Tools Model Checking Support for the ASM High-Level Language . . . . . . . . . . . . . . 331 Giuseppe Del Castillo and Kirsten Winter Table of

1,687 citations

Proceedings ArticleDOI
29 Oct 2013
TL;DR: This paper proposes an automated technique, called Swift-Hand, for generating sequences of test inputs for Android apps, which uses machine learning to learn a model of the app during testing, uses the learned model to generate user inputs that visit unexplored states of theapp, and uses the execution of the application on the generated inputs to refine the model.
Abstract: Smartphones and tablets with rich graphical user interfaces (GUI) are becoming increasingly popular. Hundreds of thousands of specialized applications, called apps, are available for such mobile platforms. Manual testing is the most popular technique for testing graphical user interfaces of such apps. Manual testing is often tedious and error-prone. In this paper, we propose an automated technique, called Swift-Hand, for generating sequences of test inputs for Android apps. The technique uses machine learning to learn a model of the app during testing, uses the learned model to generate user inputs that visit unexplored states of the app, and uses the execution of the app on the generated inputs to refine the model. A key feature of the testing algorithm is that it avoids restarting the app, which is a significantly more expensive operation than executing the app on a sequence of inputs. An important insight behind our testing algorithm is that we do not need to learn a precise model of an app, which is often computationally intensive, if our goal is to simply guide test execution into unexplored parts of the state space. We have implemented our testing algorithm in a publicly available tool for Android apps written in Java. Our experimental results show that we can achieve significantly better coverage than traditional random testing and L*-based testing in a given time budget. Our algorithm also reaches peak coverage faster than both random and L*-based testing.

368 citations

Proceedings ArticleDOI
11 Nov 2014
TL;DR: This work studies in detail a total of 201 commits that likely fix flaky tests in 51 open-source projects and identifies approaches that could manifest flaky behavior, and describes common strategies that developers use to fixFlaky tests.
Abstract: Regression testing is a crucial part of software development. It checks that software changes do not break existing functionality. An important assumption of regression testing is that test outcomes are deterministic: an unmodified test is expected to either always pass or always fail for the same code under test. Unfortunately, in practice, some tests often called flaky tests—have non-deterministic outcomes. Such tests undermine the regression testing as they make it difficult to rely on test results. We present the first extensive study of flaky tests. We study in detail a total of 201 commits that likely fix flaky tests in 51 open-source projects. We classify the most common root causes of flaky tests, identify approaches that could manifest flaky behavior, and describe common strategies that developers use to fix flaky tests. We believe that our insights and implications can help guide future research on the important topic of (avoiding) flaky tests.

334 citations