scispace - formally typeset
Search or ask a question
Author

Donna M. Williams

Bio: Donna M. Williams is an academic researcher from United States Military Academy. The author has contributed to research in topics: Virus & Immunity. The author has an hindex of 5, co-authored 5 publications receiving 1847 citations.

Papers
More filters
Journal ArticleDOI
17 Jan 2002-Nature
TL;DR: The replication-defective adenovirus is a promising vaccine vector for development of an HIV-1 vaccine and elicited by a replication-incompetent Ad5 vector, used either alone or as a booster inoculation after priming with a DNA vector.
Abstract: Recent studies of human immunodeficiency virus type 1 (HIV-1) infection in humans and of simian immunodeficiency virus (SIV) in rhesus monkeys have shown that resolution of the acute viral infection and control of the subsequent persistent infection are mediated by the antiviral cellular immune response. We comparatively assessed several vaccine vector delivery systems-three formulations of a plasmid DNA vector, the modified vaccinia Ankara (MVA) virus, and a replication incompetent adenovirus type 5 (Ad5) vector-expressing the SIV gag protein for their ability to elicit such immune responses in monkeys. The vaccines were tested either as a single modality or in combined modality regimens. Here we show that the most effective responses were elicited by a replication-incompetent Ad5 vector, used either alone or as a booster inoculation after priming with a DNA vector. After challenge with a pathogenic HIV-SIV hybrid virus (SHIV), the animals immunized with Ad5 vector exhibited the most pronounced attenuation of the virus infection. The replication-defective adenovirus is a promising vaccine vector for development of an HIV-1 vaccine.

1,240 citations

Journal ArticleDOI
TL;DR: Results are suggestive of an immunization strategy for humans that is centered on use of the adenovirus vector and in which existing adenavirus immunity may be overcome by combined immunization with adjuvanted DNA and adenvirus vector boosting.
Abstract: Cellular immune responses, particularly those associated with CD3 CD8 cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defective adenovirus serotype 5 (Ad5) vector, each expressing the same codon-optimized HIV-1 gag gene for immunogenicity in rhesus monkeys. The DNA vaccines were formulated with and without one of two chemical adjuvants (aluminum phosphate and CRL1005). The Ad5-gag vector was the most effective in eliciting anti-Gag CTL. The vaccine produced both CD4 and CD8 T-cell responses, with the latter consistently being the dominant component. To determine the effect of existing antiadenovirus immunity on Ad5-gag-induced immune responses, monkeys were exposed to adenovirus subtype 5 that did not encode antigen prior to immunization with Ad5-gag. The resulting anti-Gag T-cell responses were attenuated but not abolished. Regimens that involved priming with different DNA vaccine formulations followed by boosting with the adenovirus vector were also compared. Of the formulations tested, the DNA-CRL1005 vaccine primed T-cell responses most effectively and provided the best overall immune responses after boosting with Ad5-gag. These results are suggestive of an immunization strategy for humans that are centered on use of the adenovirus vector and in which existing adenovirus immunity may be overcome by combined immunization with adjuvanted DNA and adenovirus vector boosting.

425 citations

Journal ArticleDOI
TL;DR: Results indicate that Ad5 is stabilized by non-ionic surfactants and cryoprotectants as well as excipients known to inhibit free-radical oxidation, which should significantly enhance the utility of Ad5 as a vector for vaccines and gene therapy.

173 citations

Journal ArticleDOI
TL;DR: Investigation of plasmid DNA vaccine formulations containing a nonionic triblock copolymer adjuvant and a cationic surfactant indicates that the addition of BAK to DNA/CRL1005 formulations leads to the formation of approximately 300 nm CRL 1005-BAK-DNA particles that enhance the cellular immune response in rhesus monkeys.

37 citations

Journal ArticleDOI
14 Mar 2022-Blood
TL;DR: The role of the High Mobility Group A1 (HMGA1) chromatin regulator is elucidated as a novel driver of MPN progression and promising therapeutic target to treat or prevent disease progression.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This cell-mediated immunity vaccine did not prevent HIV-1 infection or reduce early viral level and Mechanisms for insufficient efficacy of the vaccine and the increased HIV- 1 infection rates in subgroups of vaccine recipients are being explored.

1,677 citations

Journal ArticleDOI
TL;DR: The importance of using multiparameter flow cytometry to better understand the functional capacity of effector and memory T-cell responses, thereby enabling the development of preventative and therapeutic vaccine strategies for infections is highlighted.
Abstract: T cells mediate effector functions through a variety of mechanisms. Recently, multiparameter flow cytometry has allowed a simultaneous assessment of the phenotype and multiple effector functions of single T cells; the delineation of T cells into distinct functional populations defines the quality of the response. New evidence suggests that the quality of T-cell responses is crucial for determining the disease outcome to various infections. This Review highlights the importance of using multiparameter flow cytometry to better understand the functional capacity of effector and memory T-cell responses, thereby enabling the development of preventative and therapeutic vaccine strategies for infections.

1,483 citations

Journal ArticleDOI
TL;DR: The quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.
Abstract: CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses after immunization, we show that the degree of protection against Leishmania major infection in mice is predicted by the frequency of CD4+ T cells simultaneously producing interferon-gamma, interleukin-2 and tumor necrosis factor. Notably, multifunctional effector cells generated by all vaccines tested are unique in their capacity to produce high amounts of interferon-gamma. These data show that the quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.

1,308 citations

Journal ArticleDOI
TL;DR: A productive future for DNA vaccine technology is suggested as more optimized constructs, better trial designs and improved platforms are being brought into the clinic.
Abstract: Since the discovery, over a decade and a half ago, that genetically engineered DNA can be delivered in vaccine form and elicit an immune response, there has been much progress in understanding the basic biology of this platform. A large amount of data has been generated in preclinical model systems, and more sustained cellular responses and more consistent antibody responses are being observed in the clinic. Four DNA vaccine products have recently been approved, all in the area of veterinary medicine. These results suggest a productive future for this technology as more optimized constructs, better trial designs and improved platforms are being brought into the clinic.

936 citations

Journal ArticleDOI
24 May 2002-Science
TL;DR: A fundamental role is supported for HLA-restricted immune responses in driving and shaping HIV-1 evolution in vivo and at a population level the degree of HLA–associated selection in viral sequence was predictive of viral load.
Abstract: Antigen-specific T cell immunity is HLA-restricted. Human immunodeficiency virus–type 1 (HIV-1) mutations that allow escape from host immune responses may therefore be HLA allele–specific. We analyzed HIV-1 reverse transcriptase sequences from a large HLA-diverse population of HIV-1–infected individuals. Polymorphisms in HIV-1 were most evident at sites of least functional or structural constraint and frequently were associated with particular host HLA class I alleles. Absence of polymorphism was also HLA allele–specific. At a population level, the degree of HLA-associated selection in viral sequence was predictive of viral load. These results support a fundamental role for HLA-restricted immune responses in driving and shaping HIV-1 evolution in vivo.

796 citations