scispace - formally typeset
Search or ask a question
Author

Dora Games

Other affiliations: Sunesis Pharmaceuticals
Bio: Dora Games is an academic researcher from Élan. The author has contributed to research in topics: Amyloid precursor protein & Alzheimer's disease. The author has an hindex of 43, co-authored 56 publications receiving 16933 citations. Previous affiliations of Dora Games include Sunesis Pharmaceuticals.


Papers
More filters
Journal ArticleDOI
08 Jul 1999-Nature
TL;DR: It is reported that immunization of the young animals essentially prevented the development of β-amyloid-plaque formation, neuritic dystrophy and astrogliosis, and treatment of the older animals markedly reduced the extent and progression of these AD-like neuropathologies.
Abstract: Amyloid-beta peptide (Abeta) seems to have a central role in the neuropathology of Alzheimer's disease (AD). Familial forms of the disease have been linked to mutations in the amyloid precursor protein (APP) and the presenilin genes. Disease-linked mutations in these genes result in increased production of the 42-amino-acid form of the peptide (Abeta42), which is the predominant form found in the amyloid plaques of Alzheimer's disease. The PDAPP transgenic mouse, which overexpresses mutant human APP (in which the amino acid at position 717 is phenylalanine instead of the normal valine), progressively develops many of the neuropathological hallmarks of Alzheimer's disease in an age- and brain-region-dependent manner. In the present study, transgenic animals were immunized with Abeta42, either before the onset of AD-type neuropathologies (at 6 weeks of age) or at an older age (11 months), when amyloid-beta deposition and several of the subsequent neuropathological changes were well established. We report that immunization of the young animals essentially prevented the development of beta-amyloid-plaque formation, neuritic dystrophy and astrogliosis. Treatment of the older animals also markedly reduced the extent and progression of these AD-like neuropathologies. Our results raise the possibility that immunization with amyloid-beta may be effective in preventing and treating Alzheimer's disease.

3,362 citations

Journal ArticleDOI
09 Feb 1995-Nature
TL;DR: Transgenic mice that express high levels of human mutant APP support a primary role for APP/Aβ in the genesis of AD and could provide a preclinical model for testing therapeutic drugs.
Abstract: Alzheimer's disease (AD) is the most common cause of progressive intellectual failure in aged humans. AD brains contain numerous amyloid plaques surrounded by dystrophic neurites, and show profound synaptic loss, neurofibrillary tangle formation and gliosis. The amyloid plaques are composed of amyloid beta-peptide (A beta), a 40-42-amino-acid fragment of the beta-amyloid precursor protein (APP). A primary pathogenic role for APP/A beta is suggested by missense mutations in APP that are tightly linked to autosomal dominant forms of AD. A major obstacle to elucidating and treating AD has been the lack of an animal model. Animals transgenic for APP have previously failed to show extensive AD-type neuropathology, but we now report the production of transgenic mice that express high levels of human mutant APP (with valine at residue 717 substituted by phenylalanine) and which progressively develop many of the pathological hallmarks of AD, including numerous extracellular thioflavin S-positive A beta deposits, neuritic plaques, synaptic loss, astrocytosis and microgliosis. These mice support a primary role for APP/A beta in the genesis of AD and could provide a preclinical model for testing therapeutic drugs.

2,669 citations

Journal ArticleDOI
TL;DR: Results indicate that antibodies can cross the blood–brain barrier to act directly in the central nervous system and should be considered as a therapeutic approach for the treatment of Alzheimer disease and other neurological disorders.
Abstract: One hallmark of Alzheimer disease is the accumulation of amyloid beta-peptide in the brain and its deposition as plaques. Mice transgenic for an amyloid beta precursor protein (APP) mini-gene driven by a platelet-derived (PD) growth factor promoter (PDAPP mice), which overexpress one of the disease-linked mutant forms of the human amyloid precursor protein, show many of the pathological features of Alzheimer disease, including extensive deposition of extracellular amyloid plaques, astrocytosis and neuritic dystrophy. Active immunization of PDAPP mice with human amyloid beta-peptide reduces plaque burden and its associated pathologies. Several hypotheses have been proposed regarding the mechanism of this response. Here we report that peripheral administration of antibodies against amyloid beta-peptide, was sufficient to reduce amyloid burden. Despite their relatively modest serum levels, the passively administered antibodies were able to enter the central nervous system, decorate plaques and induce clearance of preexisting amyloid. When examined in an ex vivo assay with sections of PDAPP or Alzheimer disease brain tissue, antibodies against amyloid beta-peptide triggered microglial cells to clear plaques through Fc receptor-mediated phagocytosis and subsequent peptide degradation. These results indicate that antibodies can cross the blood-brain barrier to act directly in the central nervous system and should be considered as a therapeutic approach for the treatment of Alzheimer disease and other neurological disorders.

2,181 citations

Journal ArticleDOI
21 Dec 2000-Nature
TL;DR: It is shown that PDAPP mice also exhibit a separate age-related deficit in learning a series of spatial locations, which indicates that Aβ overexpression and/or Aβ plaques are associated with disturbed cognitive function and suggests that some but not all forms of learning and memory are suitable behavioural assays of the progressive cognitive deficits associated with Alzheimer's-disease-type pathologies.
Abstract: Mice that overexpress the human mutant amyloid precursor protein (hAPP) show learning deficits, but the apparent lack of a relationship between these deficits and the progressive beta-amyloid plaque formation that the hAPP mice display is puzzling. In the water maze, hAPP mice are impaired before and after amyloid plaque deposition. Here we show, using a new water-maze training protocol, that PDAPP mice also exhibit a separate age-related deficit in learning a series of spatial locations. This impairment correlates with beta-amyloid plaque burden and is shown in both cross-sectional and longitudinal experimental designs. Cued navigation and object-recognition memory are normal. These findings indicate that A beta overexpression and/or A beta plaques are associated with disturbed cognitive function and, importantly, suggest that some but not all forms of learning and memory are suitable behavioural assays of the progressive cognitive deficits associated with Alzheimer's-disease-type pathologies.

787 citations

Journal ArticleDOI
TL;DR: In this paper, levels of amyloid β-peptide (Aβ) were measured in brain regions of transgenic mice between 4 and 18 months of age, showing that Aβ levels dramatically and predictably increased in brain areas undergoing histochemically confirmed amyloidsosis, most notably in the cortex and hippocampus.
Abstract: The PDAPP transgenic mouse, which overexpresses human amyloid precursor protein (APP717V→F), has been shown to develop much of the pathology associated with Alzheimer disease. In this report, levels of APP and its amyloidogenic metabolites were measured in brain regions of transgenic mice between 4 and 18 months of age. While absolute levels of APP expression likely contribute to the rate of amyloid β-peptide (Aβ) deposition, regionally specific factors also seem important, as homozygotic mice express APP levels in pathologically unaffected regions in excess of that measured in certain amyloid plaque-prone regions of heterozygotic mice. Regional levels of APP and APP-β were nearly constant at all ages, while Aβ levels dramatically and predictably increased in brain regions undergoing histochemically confirmed amyloidosis, most notably in the cortex and hippocampus. In hippocampus, Aβ concentrations increase 17-fold between the ages of 4 and 8 months, and by 18 months of age are over 500-fold that at 4 months, reaching an average level in excess of 20 nmol of Aβ per g of tissue. Aβ1–42 constitutes the vast majority of the depositing Aβ species. The similarities observed between the PDAPP mouse and human Alzheimer disease with regard to Aβ42 deposition occurring in a temporally and regionally specific fashion further validate the use of the model in understanding processes related to the disease.

663 citations


Cited by
More filters
Journal ArticleDOI
19 Jul 2002-Science
TL;DR: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid β-peptide in plaques in brain tissue and the rest of the disease process is proposed to result from an imbalance between Aβ production and Aβ clearance.
Abstract: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer9s disease (AD) may be caused by deposition of amyloid β-peptide (Aβ) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Aβ in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Aβ production and Aβ clearance.

12,652 citations

Journal ArticleDOI
TL;DR: The relative importance of the common main-chain and side-chain interactions in determining the propensities of proteins to aggregate is discussed and some of the evidence that the oligomeric fibril precursors are the primary origins of pathological behavior is described.
Abstract: Peptides or proteins convert under some conditions from their soluble forms into highly ordered fibrillar aggregates. Such transitions can give rise to pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. In this review, we identify the diseases known to be associated with formation of fibrillar aggregates and the specific peptides and proteins involved in each case. We describe, in addition, that living organisms can take advantage of the inherent ability of proteins to form such structures to generate novel and diverse biological functions. We review recent advances toward the elucidation of the structures of amyloid fibrils and the mechanisms of their formation at a molecular level. Finally, we discuss the relative importance of the common main-chain and side-chain interactions in determining the propensities of proteins to aggregate and describe some of the evidence that the oligomeric fibril precursors are the primary origins of pathological behavior.

5,897 citations

Journal ArticleDOI
TL;DR: Evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the beta-amyloid precursor protein by the protease called gamma-secretase has spurred progress toward novel therapeutics and provided discrete biochemical targets for drug screening and development.
Abstract: Rapid progress in deciphering the biological mechanism of Alzheimer's disease (AD) has arisen from the application of molecular and cell biology to this complex disorder of the limbic and association cortices. In turn, new insights into fundamental aspects of protein biology have resulted from research on the disease. This beneficial interplay between basic and applied cell biology is well illustrated by advances in understanding the genotype-to-phenotype relationships of familial Alzheimer's disease. All four genes definitively linked to inherited forms of the disease to date have been shown to increase the production and/or deposition of amyloid β-protein in the brain. In particular, evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the β-amyloid precursor protein by the protease called γ-secretase has spurred progress toward novel therapeutics. The finding that presenilin itself may be the long-sought γ-...

5,890 citations

Journal ArticleDOI
TL;DR: Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.
Abstract: The distinct protein aggregates that are found in Alzheimer's, Parkinson's, Huntington's and prion diseases seem to cause these disorders. Small intermediates - soluble oligomers - in the aggregation process can confer synaptic dysfunction, whereas large, insoluble deposits might function as reservoirs of the bioactive oligomers. These emerging concepts are exemplified by Alzheimer's disease, in which amyloid beta-protein oligomers adversely affect synaptic structure and plasticity. Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.

4,499 citations

Journal ArticleDOI
TL;DR: A group of experts on aging and MCI from around the world in the fields of neurology, psychiatry, geriatrics, neuropsychology, neuroimaging, neuropathology, clinical trials, and ethics was convened to summarize the current state of the field of MCI.
Abstract: The field of aging and dementia is focusing on the characterization of the earliest stages of cognitive impairment. Recent research has identified a transitional state between the cognitive changes of normal aging and Alzheimer's disease (AD), known as mild cognitive impairment (MCI). Mild cognitive impairment refers to the clinical condition between normal aging and AD in which persons experience memory loss to a greater extent than one would expect for age, yet they do not meet currently accepted criteria for clinically probable AD. When these persons are observed longitudinally, they progress to clinically probable AD at a considerably accelerated rate compared with healthy age-matched individuals. Consequently, this condition has been recognized as suitable for possible therapeutic intervention, and several multicenter international treatment trials are under way. Because this is a topic of intense interest, a group of experts on aging and MCI from around the world in the fields of neurology, psychiatry, geriatrics, neuropsychology, neuroimaging, neuropathology, clinical trials, and ethics was convened to summarize the current state of the field of MCI. Participants reviewed the world scientific literature on aging and MCI and summarized the various topics with respect to available evidence on MCI. Diagnostic criteria and clinical outcomes of these subjects are available in the literature. Mild cognitive impairment is believed to be a high-risk condition for the development of clinically probable AD. Heterogeneity in the use of the term was recognized, and subclassifications were suggested. While no treatments are recommended for MCI currently, clinical trials regarding potential therapies are under way. Recommendations concerning ethical issues in the diagnosis and the management of subjects with MCI were made.

4,424 citations