scispace - formally typeset
Search or ask a question
Author

Doriano Brogioli

Bio: Doriano Brogioli is an academic researcher from University of Bremen. The author has contributed to research in topics: Light scattering & Scattering. The author has an hindex of 32, co-authored 103 publications receiving 3163 citations. Previous affiliations of Doriano Brogioli include University of Cagliari & University of Pennsylvania.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel method, based on electric double-layer capacitor technology, which can be used to turn sources of salinity difference into completely renewable sources of energy.
Abstract: Completely renewable energy can be produced by using water solutions of different salinity, like river water and sea water. Many different methods are already known, but development is still at prototype stage. Here I report a novel method, based on electric double-layer capacitor technology. Two porous electrodes, immersed in the salt solution, constitute a capacitor. It is first charged, then the salt solution is brought into contact with fresh water. The electrostatic energy increases as the salt concentration of the solution is reduced due to diffusion. This device can be used to turn sources of salinity difference into completely renewable sources of energy. An experimental demonstration is given, and performances and possible improvements are discussed.

376 citations

Journal ArticleDOI
TL;DR: An overview of the current progress in salinity gradient power generation is presented, the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) are discussed and perspectives on the outlook of salinitygradient power generation are provided.
Abstract: Combining two solutions of different composition releases the Gibbs free energy of mixing. By using engineered processes to control the mixing, chemical energy stored in salinity gradients can be harnessed for useful work. In this critical review, we present an overview of the current progress in salinity gradient power generation, discuss the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) and provide perspectives on the outlook of salinity gradient power generation. Momentous strides have been made in technical development of salinity gradient technologies and field demonstrations with natural and anthropogenic salinity gradients (for example, seawater-river water and desalination brine-wastewater, respectively), but fouling persists to be a pivotal operational challenge that can significantly ebb away cost-competitiveness. Natural hypersaline sources (e.g., hypersaline lakes and salt domes) can achieve greater concentration difference and, thus, offer opportunities to overcome some of the limitations inherent to seawater-river water. Technological advances needed to fully exploit the larger salinity gradients are identified. While seawater desalination brine is a seemingly attractive high salinity anthropogenic stream that is otherwise wasted, actual feasibility hinges on the appropriate pairing with a suitable low salinity stream. Engineered solutions are foulant-free and can be thermally regenerative for application in low-temperature heat utilization. Alternatively, PRO, RED, and CapMix can be coupled with their analog separation process (reverse osmosis, electrodialysis, and capacitive deionization, respectively) in salinity gradient flow batteries for energy storage in chemical potential of the engineered solutions. Rigorous techno-economic assessments can more clearly identify the prospects of low-grade heat conversion and large-scale energy storage. While research attention is squarely focused on efficiency and power improvements, efforts to mitigate fouling and lower membrane and electrode cost will be equally important to reduce levelized cost of salinity gradient energy production and, thus, boost PRO, RED, and CapMix power generation to be competitive with other renewable technologies. Cognizance of the recent key developments and technical progress on the different technological fronts can help steer the strategic advancement of salinity gradient as a sustainable energy source.

238 citations

Journal ArticleDOI
TL;DR: The PA/CL NPs described in this work are endowed with the highest affinity for Abeta so far reported, which makes them a very promising vector for the targeted delivery of potential new diagnostic and therapeutic molecules to be tested in appropriate animal models.

183 citations

Journal ArticleDOI
TL;DR: Brogioli et al. as discussed by the authors developed a simple prototype flow cell of much larger dimensions, where the electrodes were no longer placed side-by-side, but parallel to one another, separated only by a 250 μm-thick open spacer channel to form a "sandwich"-like flow cell.
Abstract: Electrical energy can be obtained from the controlled mixing of fresh (river) and saline (sea) water. Existing technologies such as pressure retarded osmosis and reverse electrodialysis make use of ion-exchange membranes which must be crossed by either the water or the ions. Recently a new physical principle has been experimentally demonstrated, which allows extraction of electrical energy without making use of membranes, based on the temporary storage of ions inside two porous electrodes kept at different electrical potentials, and the repeatable expansion/contraction of the electrostatic double layers formed inside the electrodes upon changing the salt concentration [D. Brogioli, Phys. Rev. Lett., 2009, 103, 058501]. To make further investigations and to improve the energy recovery, we developed a simple prototype cell of much larger dimensions. Because of the larger dimensions (thus higher currents), testing is more facile, while this design can be the basis for further scaling-up of this technology. In order to reduce the internal resistance of the cell, the electrodes are no longer placed side-by-side, but parallel to one another, separated only by a 250 μm-thick open spacer channel to form a “sandwich”-like flow cell. In a lab-scale experimental stack consisting of 8 such cells (with outer dimensions 6 × 6 × 1 cm3) we extract about 2 J per charging/discharging cycle in 500 mM/1 mM NaCl salt solution, an amount which is 20 times higher per cycle per unit electrode mass than previously obtained. The extracted energy increases with the operating voltage, in line with predictions of the Gouy-Chapman-Stern model for double layer formation.

181 citations

Journal ArticleDOI
TL;DR: Electrochemical lithium recovery, based on electrochemical ion-pumping technology, offers higher capacity production, it does not require the use of chemicals for the regeneration of the materials, reduces the consumption of water and the production of chemical wastes, and allows the production rate to be controlled, attending to the market demand.
Abstract: Due to the ubiquitous presence of lithium-ion batteries in portable applications, and their implementation in the transportation and large-scale energy sectors, the future cost and availability of lithium is currently under debate. Lithium demand is expected to grow in the near future, up to 900 ktons per year in 2025. Lithium utilization would depend on a strong increase in production. However, the currently most extended lithium extraction method, the lime-soda evaporation process, requires a period of time in the range of 1-2 years and depends on weather conditions. The actual global production of lithium by this technology will soon be far exceeded by market demand. Alternative production methods have recently attracted great attention. Among them, electrochemical lithium recovery, based on electrochemical ion-pumping technology, offers higher capacity production, it does not require the use of chemicals for the regeneration of the materials, reduces the consumption of water and the production of chemical wastes, and allows the production rate to be controlled, attending to the market demand. Here, this technology is analyzed with a special focus on the methodology, materials employed, and reactor designs. The state-of-the-art is reevaluated from a critical perspective and the viability of the different proposed methodologies analyzed.

158 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Capacitive deionization (CDI) as mentioned in this paper is a promising technology for energy-efficient water desalination using porous carbon electrodes, which is made of porous carbons optimized for salt storage capacity and ion and electron transport.

1,622 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent progress, from both in situ experiments and advanced simulation techniques, in understanding the charge storage mechanism in carbon- and oxide-based supercapacitors.
Abstract: Supercapacitors are electrochemical energy storage devices that operate on the simple mechanism of adsorption of ions from an electrolyte on a high-surface-area electrode. Over the past decade, the performance of supercapacitors has greatly improved, as electrode materials have been tuned at the nanoscale and electrolytes have gained an active role, enabling more efficient storage mechanisms. In porous carbon materials with subnanometre pores, the desolvation of the ions leads to surprisingly high capacitances. Oxide materials store charge by surface redox reactions, leading to the pseudocapacitive effect. Understanding the physical mechanisms underlying charge storage in these materials is important for further development of supercapacitors. Here we review recent progress, from both in situ experiments and advanced simulation techniques, in understanding the charge storage mechanism in carbon- and oxide-based supercapacitors. We also discuss the challenges that still need to be addressed for building better supercapacitors.

1,565 citations

Journal ArticleDOI
16 Aug 2012-Nature
TL;DR: Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters, allowing both wastewater treatment and power production.
Abstract: Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production.

1,190 citations

Journal ArticleDOI
TL;DR: In this article, the authors examine the key challenges facing membrane distillation and explore the opportunities for improving membrane membranes and system design, highlighting the outlook for MD desalination, highlighting challenges and key areas for future research and development.
Abstract: Energy-efficient desalination and water treatment technologies play a critical role in augmenting freshwater resources without placing an excessive strain on limited energy supplies. By desalinating high-salinity waters using low-grade or waste heat, membrane distillation (MD) has the potential to increase sustainable water production, a key facet of the water-energy nexus. However, despite advances in membrane technology and the development of novel process configurations, the viability of MD as an energy-efficient desalination process remains uncertain. In this review, we examine the key challenges facing MD and explore the opportunities for improving MD membranes and system design. We begin by exploring how the energy efficiency of MD is limited by the thermal separation of water and dissolved solutes. We then assess the performance of MD relative to other desalination processes, including reverse osmosis and multi-effect distillation, comparing various metrics including energy efficiency, energy quality, and susceptibility to fouling. By analyzing the impact of membrane properties on the energy efficiency of an MD desalination system, we demonstrate the importance of maximizing porosity and optimizing thickness to minimize energy consumption. We also show how ineffective heat recovery and temperature polarization can limit the energetic performance of MD and how novel process variants seek to reduce these inefficiencies. Fouling, scaling, and wetting can have a significant detrimental impact on MD performance. We outline how novel membrane designs with special surface wettability and process-based fouling control strategies may bolster membrane and process robustness. Finally, we explore applications where MD may be able to outperform established desalination technologies, increasing water production without consuming large amounts of electrical or high-grade thermal energy. We conclude by discussing the outlook for MD desalination, highlighting challenges and key areas for future research and development.

665 citations