scispace - formally typeset
Search or ask a question
Author

Doris Ollig

Bio: Doris Ollig is an academic researcher from Max Planck Society. The author has contributed to research in topics: Cotransporter & Bacterial rhodopsins. The author has an hindex of 5, co-authored 6 publications receiving 3346 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated by functional expression, both in oocytes of Xenopus laevis and mammalian cells, that ChR2 is a directly light-switched cation-selective ion channel, and may be used to depolarize small or large cells, simply by illumination.
Abstract: Microbial-type rhodopsins are found in archaea, prokaryotes, and eukaryotes. Some of them represent membrane ion transport proteins such as bacteriorhodopsin, a light-driven proton pump, or channelrhodopsin-1 (ChR1), a recently identified light-gated proton channel from the green alga Chlamydomonas reinhardtii. ChR1 and ChR2, a related microbial-type rhodopsin from C. reinhardtii, were shown to be involved in generation of photocurrents of this green alga. We demonstrate by functional expression, both in oocytes of Xenopus laevis and mammalian cells, that ChR2 is a directly light-switched cation-selective ion channel. This channel opens rapidly after absorption of a photon to generate a large permeability for monovalent and divalent cations. ChR2 desensitizes in continuous light to a smaller steady-state conductance. Recovery from desensitization is accelerated by extracellular H+ and negative membrane potential, whereas closing of the ChR2 ion channel is decelerated by intracellular H+. ChR2 is expressed mainly in C. reinhardtii under low-light conditions, suggesting involvement in photoreception in dark-adapted cells. The predicted seven-transmembrane α helices of ChR2 are characteristic for G protein-coupled receptors but reflect a different motif for a cation-selective ion channel. Finally, we demonstrate that ChR2 may be used to depolarize small or large cells, simply by illumination.

2,519 citations

Journal ArticleDOI
28 Jun 2002-Science
TL;DR: A complementary DNA sequence in the green alga Chlamydomonas reinhardtiithat encodes a microbial opsin-related protein, which is suggested to be Channelopsin-1, which shows homology to the light-activated proton pump bacteriorhodopsin.
Abstract: Phototaxis and photophobic responses of green algae are mediated by rhodopsins with microbial-type chromophores. We report a complementary DNA sequence in the green alga Chlamydomonas reinhardtii that encodes a microbial opsin-related protein, which we term Channelopsin-1. The hydrophobic core region of the protein shows homology to the light-activated proton pump bacteriorhodopsin. Expression of Channelopsin-1, or only the hydrophobic core, in Xenopus laevis oocytes in the presence of all-trans retinal produces a light-gated conductance that shows characteristics of a channel selectively permeable for protons. We suggest that Channelrhodopsins are involved in phototaxis of green algae.

1,107 citations

Journal ArticleDOI
TL;DR: In the proteoliposomes, Na+ cotransport systems for D-glucose, acidic and neutral amino acids, and mono- and dicarboxylic acids were demonstrated by showing that due to an inwardly directed Na+ gradient the substrate concentrations in the proteosomes increased significantly over their respective equilibrium values.

58 citations

Journal Article
TL;DR: The data demonstrate homologous Na(+)-D-glucose cotransporters in kidney and intestine and suggest that during maturation of the enterocytes when the total area of brush-border membrane increases, the concentration of the Na+ gradient-dependent Cotransporter in the brush- border membrane remains constant.

29 citations

Journal ArticleDOI
TL;DR: Some epitopes on the Na+-D- glucose cotransporter are altered by D-glucose and also by substrates of other Na-coupled transporters, which suggests functional coupling of different Na-cotransport systems.

29 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors adapted the naturally occurring algal protein Channelrhodopsin-2, a rapidly gated light-sensitive cation channel, by using lentiviral gene delivery in combination with high-speed optical switching to photostimulate mammalian neurons.
Abstract: Temporally precise, noninvasive control of activity in well-defined neuronal populations is a long-sought goal of systems neuroscience. We adapted for this purpose the naturally occurring algal protein Channelrhodopsin-2, a rapidly gated light-sensitive cation channel, by using lentiviral gene delivery in combination with high-speed optical switching to photostimulate mammalian neurons. We demonstrate reliable, millisecond-timescale control of neuronal spiking, as well as control of excitatory and inhibitory synaptic transmission. This technology allows the use of light to alter neural processing at the level of single spikes and synaptic events, yielding a widely applicable tool for neuroscientists and biomedical engineers.

4,411 citations

Journal ArticleDOI
TL;DR: It is demonstrated by functional expression, both in oocytes of Xenopus laevis and mammalian cells, that ChR2 is a directly light-switched cation-selective ion channel, and may be used to depolarize small or large cells, simply by illumination.
Abstract: Microbial-type rhodopsins are found in archaea, prokaryotes, and eukaryotes. Some of them represent membrane ion transport proteins such as bacteriorhodopsin, a light-driven proton pump, or channelrhodopsin-1 (ChR1), a recently identified light-gated proton channel from the green alga Chlamydomonas reinhardtii. ChR1 and ChR2, a related microbial-type rhodopsin from C. reinhardtii, were shown to be involved in generation of photocurrents of this green alga. We demonstrate by functional expression, both in oocytes of Xenopus laevis and mammalian cells, that ChR2 is a directly light-switched cation-selective ion channel. This channel opens rapidly after absorption of a photon to generate a large permeability for monovalent and divalent cations. ChR2 desensitizes in continuous light to a smaller steady-state conductance. Recovery from desensitization is accelerated by extracellular H+ and negative membrane potential, whereas closing of the ChR2 ion channel is decelerated by intracellular H+. ChR2 is expressed mainly in C. reinhardtii under low-light conditions, suggesting involvement in photoreception in dark-adapted cells. The predicted seven-transmembrane α helices of ChR2 are characteristic for G protein-coupled receptors but reflect a different motif for a cation-selective ion channel. Finally, we demonstrate that ChR2 may be used to depolarize small or large cells, simply by illumination.

2,519 citations

Journal ArticleDOI
08 Sep 2011-Nature
TL;DR: In this article, the authors design and use several optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology.
Abstract: Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30–80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms. One model for the cellular disturbances underlying social and emotional deficits in disorders such as autism and schizophrenia is an imbalance in excitatory and inhibitory activity in certain neural systems. This idea has not been directly testable so far, but testability comes a little closer with the development of two optogenetic tools that have different spectral and temporal characteristics, thereby allowing selective control of two intermingled populations of neurons. Use of these new opsins shows that increasing relative excitation in mouse prefrontal cortex impairs social and learning behaviours. This provides support for the elevated cellular excitatory/inhibitory balance hypothesis of certain neuropsychiatric symptoms.

1,906 citations

01 Jan 2011
TL;DR: Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30–80 Hz range, which have both been observed in clinical conditions in humans.
Abstract: Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30–80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.

1,738 citations

Journal ArticleDOI
14 Jul 2011-Neuron
TL;DR: A primer on the application of optogenetics in neuroscience is provided, focusing on the single-component tools and highlighting important problems, challenges, and technical considerations.

1,712 citations