scispace - formally typeset
Search or ask a question
Author

Dorje C. Brody

Bio: Dorje C. Brody is an academic researcher from University of Surrey. The author has contributed to research in topics: Quantum state & Quantum process. The author has an hindex of 42, co-authored 222 publications receiving 7454 citations. Previous affiliations of Dorje C. Brody include Churchill College & Imperial College London.


Papers
More filters
Journal ArticleDOI
TL;DR: If PT symmetry is not spontaneously broken, it is possible to construct a previously unnoticed symmetry C of the Hamiltonian, and this work is not in conflict with conventional quantum mechanics but is rather a complex generalization of it.
Abstract: Erratum: Complex Extension of Quantum Mechanics [Phys. Rev. Lett. 89, 270401 (2002)] Carl M. Bender, Dorje C. Brody, and Hugh F. Jones Phys. Rev. Lett. 92, 119902 (2004) http://dx.doi.org/10.1103/PhysRevLett.92.119902

1,534 citations

Journal ArticleDOI
TL;DR: In this paper, a locally invariant measure is assigned to the degree of entanglement of a given state for a general multi-particle system, and the properties of this measure are analysed for the entangled states of a pair of spin 1 2 particles.

403 citations

Journal ArticleDOI
TL;DR: In this paper, the Hermiticity condition in quantum mechanics required for the characterization of physical observables and generators of unitary motions can be relaxed into a wider class of operators whose eigenvalues are real and whose Eigenstates are complete.
Abstract: The Hermiticity condition in quantum mechanics required for the characterization of (a) physical observables and (b) generators of unitary motions can be relaxed into a wider class of operators whose eigenvalues are real and whose eigenstates are complete. In this case, the orthogonality of eigenstates is replaced by the notion of biorthogonality that defines the relation between the Hilbert space of states and its dual space. The resulting quantum theory, which might appropriately be called 'biorthogonal quantum mechanics', is developed here in some detail in the case for which the Hilbert-space dimensionality is finite. Specifically, characterizations of probability assignment rules, observable properties, pure and mixed states, spin particles, measurements, combined systems and entanglements, perturbations, and dynamical aspects of the theory are developed. The paper concludes with a brief discussion on infinite-dimensional systems.

398 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that a quantum theory based on a non-Hermitian Hamiltonian violates unitarity, but if PT symmetry is not broken, it is possible to use a previously unnoticed physical symmetry of the Hamiltonian to construct an inner product whose associated norm is positive definite.
Abstract: A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but instead satisfies the physical condition of space–time reflection symmetry (PT symmetry). Thus, there are infinitely many new Hamiltonians that one can construct that might explain experimental data. One would think that a quantum theory based on a non-Hermitian Hamiltonian violates unitarity. However, if PT symmetry is not broken, it is possible to use a previously unnoticed physical symmetry of the Hamiltonian to construct an inner product whose associated norm is positive definite. This construction is general and works for any PT-symmetric Hamiltonian. The dynamics is governed by unitary time evolution. This formulation does not conflict with the requirements of conventional quantum mechanics. There are many possible observable and experimental consequences of extending quantum mechanics into the complex domain, both in particle physics and in solid state physics.

381 citations

Journal ArticleDOI
TL;DR: The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole and may have applications in quantum computing.
Abstract: Given an initial quantum state $|{\ensuremath{\psi}}_{I}⟩$ and a final quantum state $|{\ensuremath{\psi}}_{F}⟩$, there exist Hamiltonians $H$ under which $|{\ensuremath{\psi}}_{I}⟩$ evolves into $|{\ensuremath{\psi}}_{F}⟩$. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of $H$ is held fixed, which $H$ achieves this transformation in the least time $\ensuremath{\tau}$? For Hermitian Hamiltonians $\ensuremath{\tau}$ has a nonzero lower bound. However, among non-Hermitian $\mathcal{P}\mathcal{T}$-symmetric Hamiltonians satisfying the same energy constraint, $\ensuremath{\tau}$ can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from $|{\ensuremath{\psi}}_{I}⟩$ to $|{\ensuremath{\psi}}_{F}⟩$ can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing.

373 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The authors found that people are much more likely to believe stories that favor their preferred candidate, especially if they have ideologically segregated social media networks, and that the average American adult saw on the order of one or perhaps several fake news stories in the months around the 2016 U.S. presidential election, with just over half of those who recalled seeing them believing them.
Abstract: Following the 2016 U.S. presidential election, many have expressed concern about the effects of false stories (“fake news”), circulated largely through social media. We discuss the economics of fake news and present new data on its consumption prior to the election. Drawing on web browsing data, archives of fact-checking websites, and results from a new online survey, we find: (i) social media was an important but not dominant source of election news, with 14 percent of Americans calling social media their “most important” source; (ii) of the known false news stories that appeared in the three months before the election, those favoring Trump were shared a total of 30 million times on Facebook, while those favoring Clinton were shared 8 million times; (iii) the average American adult saw on the order of one or perhaps several fake news stories in the months around the election, with just over half of those who recalled seeing them believing them; and (iv) people are much more likely to believe stories that favor their preferred candidate, especially if they have ideologically segregated social media networks.

3,959 citations

Posted Content
TL;DR: In this article, the authors introduce the concept of ''search'' where a buyer wanting to get a better price, is forced to question sellers, and deal with various aspects of finding the necessary information.
Abstract: The author systematically examines one of the important issues of information — establishing the market price. He introduces the concept of «search» — where a buyer wanting to get a better price, is forced to question sellers. The article deals with various aspects of finding the necessary information.

3,790 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the first observation of the behaviour of a PT optical coupled system that judiciously involves a complex index potential, and observe both spontaneous PT symmetry breaking and power oscillations violating left-right symmetry.
Abstract: One of the fundamental axioms of quantum mechanics is associated with the Hermiticity of physical observables 1 . In the case of the Hamiltonian operator, this requirement not only implies real eigenenergies but also guarantees probability conservation. Interestingly, a wide class of non-Hermitian Hamiltonians can still show entirely real spectra. Among these are Hamiltonians respecting parity‐time (PT) symmetry 2‐7 . Even though the Hermiticity of quantum observables was never in doubt, such concepts have motivated discussions on several fronts in physics, including quantum field theories 8 , nonHermitian Anderson models 9 and open quantum systems 10,11 , to mention a few. Although the impact of PT symmetry in these fields is still debated, it has been recently realized that optics can provide a fertile ground where PT-related notions can be implemented and experimentally investigated 12‐15 . In this letter we report the first observation of the behaviour of a PT optical coupled system that judiciously involves a complex index potential. We observe both spontaneous PT symmetry breaking and power oscillations violating left‐right symmetry. Our results may pave the way towards a new class of PT-synthetic materials with intriguing and unexpected properties that rely on non-reciprocal light propagation and tailored transverse energy flow. Before we introduce the concept of spacetime reflection in optics, we first briefly outline some of the basic aspects of this symmetry within the context of quantum mechanics. In general, a Hamiltonian HD p 2 =2mCV(x

3,097 citations

Journal ArticleDOI
TL;DR: In this article, an alternative formulation of quantum mechanics in which the mathematical axiom of Hermiticity (transpose + complex conjugate) is replaced by the physically transparent condition of space?time reflection ( ) symmetry.
Abstract: The Hamiltonian H specifies the energy levels and time evolution of a quantum theory. A standard axiom of quantum mechanics requires that H be Hermitian because Hermiticity guarantees that the energy spectrum is real and that time evolution is unitary (probability-preserving). This paper describes an alternative formulation of quantum mechanics in which the mathematical axiom of Hermiticity (transpose +complex conjugate) is replaced by the physically transparent condition of space?time reflection ( ) symmetry. If H has an unbroken symmetry, then the spectrum is real. Examples of -symmetric non-Hermitian quantum-mechanical Hamiltonians are and . Amazingly, the energy levels of these Hamiltonians are all real and positive!Does a -symmetric Hamiltonian H specify a physical quantum theory in which the norms of states are positive and time evolution is unitary? The answer is that if H has an unbroken symmetry, then it has another symmetry represented by a linear operator . In terms of , one can construct a time-independent inner product with a positive-definite norm. Thus, -symmetric Hamiltonians describe a new class of complex quantum theories having positive probabilities and unitary time evolution.The Lee model provides an excellent example of a -symmetric Hamiltonian. The renormalized Lee-model Hamiltonian has a negative-norm 'ghost' state because renormalization causes the Hamiltonian to become non-Hermitian. For the past 50 years there have been many attempts to find a physical interpretation for the ghost, but all such attempts failed. The correct interpretation of the ghost is simply that the non-Hermitian Lee-model Hamiltonian is -symmetric. The operator for the Lee model is calculated exactly and in closed form and the ghost is shown to be a physical state having a positive norm. The ideas of symmetry are illustrated by using many quantum-mechanical and quantum-field-theoretic models.

2,647 citations

Journal ArticleDOI
TL;DR: This work demonstrates experimentally passive PT-symmetry breaking within the realm of optics, which leads to a loss induced optical transparency in specially designed pseudo-Hermitian guiding potentials.
Abstract: In 1998, Bender and Boettcher found that a wide class of Hamiltonians, even though non-Hermitian, can still exhibit entirely real spectra provided that they obey parity-time requirements or PT symmetry. Here we demonstrate experimentally passive PT-symmetry breaking within the realm of optics. This phase transition leads to a loss induced optical transparency in specially designed pseudo-Hermitian guiding potentials.

2,409 citations