scispace - formally typeset
D

Doron Aurbach

Researcher at Bar-Ilan University

Publications -  830
Citations -  82710

Doron Aurbach is an academic researcher from Bar-Ilan University. The author has contributed to research in topics: Electrolyte & Lithium. The author has an hindex of 126, co-authored 797 publications receiving 69313 citations. Previous affiliations of Doron Aurbach include Center for Advanced Materials & Hebrew University of Jerusalem.

Papers
More filters
Journal ArticleDOI

Challenges in the development of advanced Li-ion batteries: a review

TL;DR: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution as mentioned in this paper.
Journal ArticleDOI

Promise and reality of post-lithium-ion batteries with high energy densities

TL;DR: A review of post-lithium-ion batteries is presented in this paper with a focus on their operating principles, advantages and the challenges that they face, and the volumetric energy density of each battery is examined using a commercial pouch-cell configuration.
Journal ArticleDOI

Prototype systems for rechargeable magnesium batteries

TL;DR: Rechargeable Mg battery systems that show promise for applications comprise electrolyte solutions based on Mg organohaloaluminate salts, and MgxMo 3S4 cathodes, into which Mg ions can be intercalated reversibly, and with relatively fast kinetics.
Journal ArticleDOI

Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries

TL;DR: In this article, the performance of Li, Li-C anodes and Li x MO y cathodes depends on their surface chemistry in solutions, which either contribute to electrode stabilization or to capacity fading due to an increase in the electrodes' impedance.
Journal ArticleDOI

A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions

TL;DR: In this paper, it was found that the shape of graphite particles plays a key role in their application as active mass in anodes for Li-ion batteries and that the surface films formed on lithiated graphite are similar to those formed on Li metal in the same solutions.