scispace - formally typeset
Search or ask a question
Author

Dorothy M. Jones-Davis

Bio: Dorothy M. Jones-Davis is an academic researcher from University of California, San Francisco. The author has contributed to research in topics: Interneuron & Parvalbumin. The author has an hindex of 8, co-authored 10 publications receiving 494 citations. Previous affiliations of Dorothy M. Jones-Davis include University of Michigan & University of California.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex, and it is inferred that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells.
Abstract: Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders.

185 citations

Journal ArticleDOI
TL;DR: GABA(A) (gamma-n-aminobutyric acid) receptor dysfunction has long been implicated in the development of epilepsy and status epilepticus and genetic mutations found in GABA( A) receptor subunits strongly implicate the GABA(A), receptor in idiopathic generalised epilepsies.

81 citations

Journal ArticleDOI
15 Apr 2013-PLOS ONE
TL;DR: The findings reveal candidate genes in a mouse model that will inform future human and preclinical studies of autism and AgCC and identify several QTL and candidate genes for both autism-relevant traits and commissural morphology in the BTBR mouse.
Abstract: Author(s): Jones-Davis, Dorothy M; Yang, Mu; Rider, Eric; Osbun, Nathan C; da Gente, Gilberto J; Li, Jiang; Katz, Adam M; Weber, Michael D; Sen, Saunak; Crawley, Jacqueline; Sherr, Elliott H | Abstract: BackgroundAutism and Agenesis of the Corpus Callosum (AgCC) are interrelated behavioral and anatomic phenotypes whose genetic etiologies are incompletely understood. We used the BTBR T⁺ tf/J (BTBR) strain, exhibiting fully penetrant AgCC, a diminished hippocampal commissure, and abnormal behaviors that may have face validity to autism, to study the genetic basis of these disorders.MethodsWe generated 410 progeny from an F2 intercross between the BTBR and C57BL/6J strains. The progeny were phenotyped for social behaviors (as juveniles and adults) and commisural morphology, and genotyped using 458 markers. Quantitative trait loci (QTL) were identified using genome scans; significant loci were fine-mapped, and the BTBR genome was sequenced and analyzed to identify candidate genes.ResultsSix QTL meeting genome-wide significance for three autism-relevant behaviors in BTBR were identified on chromosomes 1, 3, 9, 10, 12, and X. Four novel QTL for commissural morphology on chromosomes 4, 6, and 12 were also identified. We identified a highly significant QTL (LOD score = 20.2) for callosal morphology on the distal end of chromosome 4.ConclusionsWe identified several QTL and candidate genes for both autism-relevant traits and commissural morphology in the BTBR mouse. Twenty-nine candidate genes were associated with synaptic activity, axon guidance, and neural development. This is consistent with a role for these processes in modulating white matter tract development and aspects of autism-relevant behaviors in the BTBR mouse. Our findings reveal candidate genes in a mouse model that will inform future human and preclinical studies of autism and AgCC.

57 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a constitutive supply of glutamine is provided by astrocytes to inhibitory neurons to maintain vesicle filling, and a supportive role is proposed for glutamine, even under resting conditions, to maintain GABA vesicles filling.
Abstract: GABA synthesis is necessary to maintain synaptic vesicle filling, and key proteins in its biosynthetic pathways may play a role in regulating inhibitory synaptic stability and strength. GABAergic neurons require a source of precursor glutamate, possibly from glutamine, although it is controversial whether glutamine contributes to the synaptic pool of GABA. Here we report that inhibition of System A glutamine transporters with alpha-(methyl-amino) isobutyric acid rapidly reduced the amplitude of inhibitory post-synaptic currents and miniature inhibitory post-synaptic currents (mIPSCs) recorded in rat hippocampal area cornu ammonis 1 (CA1) pyramidal neurons, indicating that synaptic vesicle content of GABA was reduced. After inhibiting astrocytic glutamine synthesis by either blocking glutamate transporters or the glutamine synthetic enzyme, the effect of alpha-(methyl-amino) isobutyric acid on mIPSC amplitudes was abolished. Exogenous glutamine did not affect mIPSC amplitudes, suggesting that the neuronal transporters are normally saturated. Our findings demonstrate that a constitutive supply of glutamine is provided by astrocytes to inhibitory neurons to maintain vesicle filling. Therefore, glutamine transporters, like those for glutamate, are potential regulators of inhibitory synaptic strength. However, in contrast to glutamate, extracellular glutamine levels are normally high. Therefore, we propose a supportive role for glutamine, even under resting conditions, to maintain GABA vesicle filling.

55 citations

Journal ArticleDOI
TL;DR: A vital role for miRNAs in governing essential aspects of inhibitory transmission and interneuron development in the mammalian nervous system is suggested.

51 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the current state of the field of interneuron research, focusing largely on the hippocampus, discusses recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations.
Abstract: In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10–15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.

545 citations

Journal ArticleDOI
TL;DR: An introductory-level thought experiment is described to provide the reader with an intuitive understanding of criticality and quantitative evidence that three functional properties of the cortex are optimized at criticality is reviewed.
Abstract: Rapidly growing empirical evidence supports the hypothesis that the cortex operates near criticality. Although the confirmation of this hypothesis would mark a significant advance in fundamental understanding of cortical physiology, a natural question arises: What functional benefits are endowed to cortical circuits that operate at criticality? In this review, we first describe an introductory-level thought experiment to provide the reader with an intuitive understanding of criticality. Second, we discuss some practical approaches for investigating criticality. Finally, we review quantitative evidence that three functional properties of the cortex are optimized at criticality: 1) dynamic range, 2) information transmission, and 3) information capacity. We focus on recently reported experimental evidence and briefly discuss the theory and history of these ideas.

471 citations

Journal ArticleDOI
TL;DR: The emerging knowledge on the pathological basis of epilepsy is reviewed and how it might best be used in the design of new therapeutics is discussed.
Abstract: Since the early 1990s, many new antiepileptic drugs (AEDs) that offer appreciable advantages in terms of their favourable pharmacokinetics, improved tolerability and lower potential for drug-drug interactions have entered the market. However, despite the therapeutic arsenal of old and new AEDs, approximately 30% of patients with epilepsy still suffer from seizures. Thus, there remains a substantial need for the development of more efficacious AEDs for patients with refractory seizures. Here, we briefly review the emerging knowledge on the pathological basis of epilepsy and how it might best be used in the design of new therapeutics. We also discuss the current approach to AED discovery and highlight some of the unique features of newer models of pharmacoresistance and epileptogenesis that have emerged in recent years.

467 citations

Journal ArticleDOI
16 Jan 2019-Neuron
TL;DR: Treatment with L.reuteri emerges as promising non-invasive microbial-based avenue to combat ASD-related social dysfunction and rescues social interaction-induced synaptic plasticity in the ventral tegmental area of ASD mice.

425 citations

Journal ArticleDOI
TL;DR: It is found that high-titer transduction of astrocytes with enhanced green fluorescent protein (eGFP) via adeno-associated virus induced reactiveAstrocytosis without altering the intrinsic properties or anatomy of neighboring neurons.
Abstract: Reactive astrocytosis develops in many neurologic diseases including epilepsy. Astrocytotic contributions to pathophysiology are poorly understood. Studies examining this are confounded by comorbidities accompanying reactive astrocytosis. We found that high-titer AAV-eGFP astrocyte transduction induced reactive astrocytosis without altering the intrinsic properties or anatomy of neighboring neurons. We used selective astrocytosis induction to examine consequences on synaptic transmission in mouse CA1 pyramidal neurons. Neurons near eGFP-labeled reactive astrocytes exhibited reduction in inhibitory, but not excitatory synaptic currents. This IPSC erosion resulted from failure of the astrocytic glutamate-glutamine cycle. Reactive astrocytes downregulated expression of glutamine synthetase. Blockade of this enzyme normally induces rapid synaptic GABA depletion. In astrocytotic regions, residual inhibition lost sensitivity to glutamine synthetase blockade, while exogenous glutamine administration enhanced IPSCs. Astrocytosis-mediated deficits in inhibition triggered glutamine-reversible hyperexcitability in hippocampal circuits. Reactive astrocytosis may thus generate local synaptic perturbations, leading to broader functional deficits associated with neurologic disease.

397 citations