scispace - formally typeset
Search or ask a question
Author

Douglas A. A. Ohlberg

Bio: Douglas A. A. Ohlberg is an academic researcher from Hewlett-Packard. The author has contributed to research in topics: Nanowire & Scanning tunneling microscope. The author has an hindex of 30, co-authored 65 publications receiving 7673 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental evidence is provided to support this general model of memristive electrical switching in oxide systems, and micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching are built.
Abstract: Nanoscale metal/oxide/metal switches have the potential to transform the market for nonvolatile memory and could lead to novel forms of computing. However, progress has been delayed by difficulties in understanding and controlling the coupled electronic and ionic phenomena that dominate the behaviour of nanoscale oxide devices. An analytic theory of the ‘memristor’ (memory-resistor) was first developed from fundamental symmetry arguments in 1971, and we recently showed that memristor behaviour can naturally explain such coupled electron–ion dynamics. Here we provide experimental evidence to support this general model of memristive electrical switching in oxide systems. We have built micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching. We demonstrate that switching involves changes to the electronic barrier at the Pt/TiO2 interface due to the drift of positively charged oxygen vacancies under an applied electric field. Vacancy drift towards the interface creates conducting channels that shunt, or short-circuit, the electronic barrier to switch ON. The drift of vacancies away from the interface annilihilates such channels, recovering the electronic barrier to switch OFF. Using this model we have built TiO2 crosspoints with engineered oxygen vacancy profiles that predictively control the switching polarity and conductance. Nanoscale metal/oxide/metal devices that are capable of fast non-volatile switching have been built from platinum and titanium dioxide. The devices could have applications in ultrahigh density memory cells and novel forms of computing.

2,744 citations

Journal ArticleDOI
TL;DR: The nature of the oxide electroforming as an electro-reduction and vacancy creation process caused by high electric fields and enhanced by electrical Joule heating is explained with direct experimental evidence.
Abstract: Metal and semiconductor oxides are ubiquitous electronic materials. Normally insulating, oxides can change behavior under high electric fields—through ‘electroforming’ or ‘breakdown’—critically affecting CMOS (complementary metal‐oxide‐semiconductor) logic, DRAM (dynamic random access memory) and flash memory, and tunnel barrier oxides. An initial irreversible electroforming process has been invariably required for obtaining metal oxide resistance switches, which may open urgently needed new avenues for advanced computer memory and logic circuits including ultra-dense non-volatile random access memory (NVRAM) and adaptive neuromorphic logic circuits. This electrical switching arises from the coupled motion of electrons and ions within the oxide material, as one of the first recognized examples of a memristor (memory‐resistor) device, the fourth fundamental passive circuit element originally predicted in 1971 by Chua. A lack of device repeatability has limited technological implementation of oxide switches, however. Here we explain the nature of the oxide electroforming as an electro-reduction and vacancy creation process caused by high electric fields and enhanced by electrical Joule heating with direct experimental evidence. Oxygen vacancies are created and drift towards the cathode, forming localized conducting channels in the oxide. Simultaneously, O 2− ions drift towards the anode where they evolve O2 gas, causing physical deformation of the junction. The problematic gas eruption and physical deformation are mitigated by shrinking to the nanoscale and controlling the electroforming voltage polarity. Better yet, electroforming problems can be largely eliminated by engineering the device structure to remove ‘bulk’ oxide effects in favor of interface-controlled electronic switching.

787 citations

Journal ArticleDOI
16 Jan 1998-Science
TL;DR: In situ scanning tunneling microscopy revealed that the smaller square-based pyramids transform abruptly during growth to significantly larger multifaceted domes, and that few structures with intermediate size and shape remain.
Abstract: Chemical vapor deposition of germanium onto the silicon (001) surface at atmospheric pressure and 600 degrees Celsius has previously been shown to produce distinct families of smaller (up to 6 nanometers high) and larger (all approximately 15 nanometers high) nanocrystals. Under ultrahigh-vacuum conditions, physical vapor deposition at approximately the same substrate temperature and growth rate produced a similar bimodal size distribution. In situ scanning tunneling microscopy revealed that the smaller square-based pyramids transform abruptly during growth to significantly larger multifaceted domes, and that few structures with intermediate size and shape remain. Both nanocrystal shapes have size-dependent energy minima that result from the interplay between strain relaxation at the facets and stress concentration at the edges. A thermodynamic model similar to a phase transition accounts for this abrupt morphology change.

736 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the fabrication and testing of nanoscale molecular-electronic circuits that comprise a molecular monolayer of [2] rotaxanes sandwiched between metal nanowires to form an 8 × 8 crossbar within a 1 µm 2 area.
Abstract: Molecular electronics offer an alternative pathway to construct nanoscale circuits in which the critical dimension is naturally associated with molecular sizes. We describe the fabrication and testing of nanoscale molecular-electronic circuits that comprise a molecular monolayer of [2]rotaxanes sandwiched between metal nanowires to form an 8 × 8 crossbar within a 1 µm 2 area. The resistance at each cross point of the crossbar can be switched reversibly. By using each cross point as an active memory cell, crossbar circuits were operated as rewritable, nonvolatile memory with a density of 6. 4G bits cm −2 .B ys etting the resistances at specific cross points, two 4 × 4s ubarrays of the crossbar were configured to be a nanoscale demultiplexer and multiplexer that were used to read memory bits in a third subarray.

701 citations

Journal ArticleDOI
TL;DR: In this article, a Langmuir−Blodgett molecular monolayer sandwiched between planar platinum and titanium metal electrodes functioned as switches and tunable resistors over a 102−105 Ω range under current or voltage control.
Abstract: Electronic devices comprising a Langmuir−Blodgett molecular monolayer sandwiched between planar platinum and titanium metal electrodes functioned as switches and tunable resistors over a 102−105 Ω range under current or voltage control. Reversible hysteretic switching and resistance tuning was qualitatively similar for three very different molecular species, indicating a generic switching mechanism dominated by electrode properties or electrode/molecule interfaces, rather than molecule-specific behavior.

354 citations


Cited by
More filters
Journal ArticleDOI
01 May 2008-Nature
TL;DR: It is shown, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage.
Abstract: Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.

8,971 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: A coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms into metal-insulator-metal systems, and a brief look into molecular switching systems is taken.
Abstract: Many metal–insulator–metal systems show electrically induced resistive switching effects and have therefore been proposed as the basis for future non-volatile memories. They combine the advantages of Flash and DRAM (dynamic random access memories) while avoiding their drawbacks, and they might be highly scalable. Here we propose a coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms. The ion-migration effects are coupled to redox processes which cause the change in resistance. They are subdivided into cation-migration cells, based on the electrochemical growth and dissolution of metallic filaments, and anion-migration cells, typically realized with transition metal oxides as the insulator, in which electronically conducting paths of sub-oxides are formed and removed by local redox processes. From this insight, we take a brief look into molecular switching systems. Finally, we discuss chip architecture and scaling issues.

4,547 citations

Journal ArticleDOI
TL;DR: In this article, solution phase syntheses and size-selective separation methods to prepare semiconductor and metal nanocrystals, tunable in size from ∼1 to 20 nm and monodisperse to ≤ 5%, are presented.
Abstract: ▪ Abstract Solution phase syntheses and size-selective separation methods to prepare semiconductor and metal nanocrystals, tunable in size from ∼1 to 20 nm and monodisperse to ≤5%, are presented. Preparation of monodisperse samples enables systematic characterization of the structural, electronic, and optical properties of materials as they evolve from molecular to bulk in the nanometer size range. Sample uniformity makes it possible to manipulate nanocrystals into close-packed, glassy, and ordered nanocrystal assemblies (superlattices, colloidal crystals, supercrystals). Rigorous structural characterization is critical to understanding the electronic and optical properties of both nanocrystals and their assemblies. At inter-particle separations 5–100 A, dipole-dipole interactions lead to energy transfer between neighboring nanocrystals, and electronic tunneling between proximal nanocrystals gives rise to dark and photoconductivity. At separations <5 A, exchange interactions cause otherwise insulating ass...

4,116 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations