scispace - formally typeset
Search or ask a question
Author

Douglas B. Kell

Bio: Douglas B. Kell is an academic researcher from University of Liverpool. The author has contributed to research in topics: Dielectric & Systems biology. The author has an hindex of 111, co-authored 634 publications receiving 50335 citations. Previous affiliations of Douglas B. Kell include Max Planck Society & University of Wales.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article , the authors present a unifying pathway for the various symptoms of Long COVID-19, including thrombotic endothelialitis, endothelial inflammation, hyperactivated platelets, and fibrinaloid microclots.
Abstract: Acute COVID-19 infection is followed by prolonged symptoms in approximately one in ten cases: known as Long COVID. The disease affects ~65 million individuals worldwide. Many pathophysiological processes appear to underlie Long COVID, including viral factors (persistence, reactivation, and bacteriophagic action of SARS CoV-2); host factors (chronic inflammation, metabolic and endocrine dysregulation, immune dysregulation, and autoimmunity); and downstream impacts (tissue damage from the initial infection, tissue hypoxia, host dysbiosis, and autonomic nervous system dysfunction). These mechanisms culminate in the long-term persistence of the disorder characterized by a thrombotic endothelialitis, endothelial inflammation, hyperactivated platelets, and fibrinaloid microclots. These abnormalities of blood vessels and coagulation affect every organ system and represent a unifying pathway for the various symptoms of Long COVID.

5 citations

Posted ContentDOI
27 Jan 2015-bioRxiv
TL;DR: In this paper, the authors explored the applicability of signal transformation and dimensionality reduction methods to sequence assembly, and implemented a short read aligner and evaluated its performance against simulated high diversity viral sequences alongside four existing aligners.
Abstract: Motivation: DNA sequencing instruments are enabling genomic analyses of unprecedented scope and scale, widening the gap between our abilities to generate and interpret sequence data. Established methods for computational sequence analysis generally use nucleotide-level resolution of sequences, and while such approaches can be very accurate, increasingly ambitious and data-intensive analyses are rendering them impractical for applications such as genome and metagenome assembly. Comparable analytical challenges are encountered in other data-intensive fields involving sequential data, such as signal processing, in which dimensionality reduction methods are routinely used to reduce the computational burden of analyses. We therefore seek to address the question of whether it is possible to improve the efficiency of sequence alignment by applying dimensionality reduction methods to numerically represented nucleotide sequences. Results: To explore the applicability of signal transformation and dimensionality reduction methods to sequence assembly, we implemented a short read aligner and evaluated its performance against simulated high diversity viral sequences alongside four existing aligners. Using our sequence transformation and feature selection approach, alignment time was reduced by up to 14-fold compared to uncompressed sequences and without reducing alignment accuracy. Despite using highly compressed sequence transformations, our implementation yielded alignments of similar overall accuracy to existing aligners, outperforming all other tools tested at high levels of sequence variation. Our approach was also applied to the de novo assembly of a simulated diverse viral population. Our results demonstrate that full sequence resolution is not a prerequisite of accurate sequence alignment and that analytical performance can be retained and even enhanced through appropriate dimensionality reduction of sequences.

5 citations

Book ChapterDOI
TL;DR: DRASTIC proved to be a rapid and reliable method for the estimation of metabolite overproduction in cultures of biotechnological interest, and it was possible to discriminate cultures overproducing closely related molecules.
Abstract: Microbial cultures can provide metabolites which are useful as structural templates for rational drug design. Increasing the titre of the metabolite is an important part of this process and is often achieved by random mutagenesis. As titre improved mutants derived by this method are extremely rare, many thousands need to be screened. screening mutants for increased metabolite production relies on methods such as assessing binding via the scintilation proximity assay or identifying an increase in concentration using chromatography. Such methods are typically restricted by the necessity to perform solvent extractions and, in the case of HPLC analysis, to optimise separation of the components of interest. Although the routine procedures can be automated, such multi-step screening processes are far from ideal. Diffuse reflectance absorbance infra-red spectroscopy provides an alternative rapid, automated, quantitative approach which yields more detailed information about chemical characteristics than, for example, the UV absorbance spectrum typically used in HPLC analysis. The method can also be employed non-invasively on unprocessed fermentation samples. We demonstrate the use of this spectroscopictechnique in combination with chemometrics for determining the concentrations of aristeromycin and neplanocin A in Streptomyces citricolor fermentations. The fermentation broths of a range of mutants previously obtained during a titre improvement programme were analysed by standard HPLC techniques and by automated diffuse reflectance absorbance infra-red spectroscopy. Chemometric processing of the infra-red spectra was performed using supervised and unsupervised multivariate calibration methods. DRASTIC proved to be a rapid and reliable method for the estimation of metabolite overproduction in cultures of biotechnological interest, and it was possible to discriminate cultures overproducing closely related molecules.

5 citations

Book ChapterDOI
TL;DR: Whereas a univariate approach necessitates appropriate data selection to remove any interferences, the chemometrics/hyperspectral approach could be employed to permit filtering of undesired components either manually, or by taking the Fourier transform of the spectral information prior to applying linear multivariate regression techniques.
Abstract: Diffuse-reflectance absorbance spectroscopy in the mid-infrared is a novel method of producing data with which to effect chemical imaging for the rapid screening of biological samples for metabolite overproduction. We have used mixtures of ampicillin and Escherichia coli , and Streptomyces citricolor producing aristeromycin and neplanocin A, as model systems. Deconvolution of the hyperspectral information provided by the raw diffuse reflectance-absorbance mid-infrared spectra may be achieved using a combination of principal components analysis (PCA) and supervised methods such as artificial neural networks (ANNs) and partial least squares regression (PLS). Whereas a univariate approach necessitates appropriate data selection to remove any interferences, the chemometrics/hyperspectral approach could be employed to permit filtering of undesired components either manually, or by taking the Fourier transform of the spectral information (in order to help isolate the signal from the baseline variation or noise) prior to applying linear multivariate regression techniques. Equivalent concentrations of ampicillin between 0.2mM and 13.5mM in an E. coli background could be quantified with good accuracy using this approach.

5 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s), which should be widely useful, especially in genome analysis of E. coli and other bacteria.
Abstract: We have developed a simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s). In this procedure, recombination requires the phage lambda Red recombinase, which is synthesized under the control of an inducible promoter on an easily curable, low copy number plasmid. To demonstrate the utility of this approach, we generated PCR products by using primers with 36- to 50-nt extensions that are homologous to regions adjacent to the gene to be inactivated and template plasmids carrying antibiotic resistance genes that are flanked by FRT (FLP recognition target) sites. By using the respective PCR products, we made 13 different disruptions of chromosomal genes. Mutants of the arcB, cyaA, lacZYA, ompR-envZ, phnR, pstB, pstCA, pstS, pstSCAB-phoU, recA, and torSTRCAD genes or operons were isolated as antibiotic-resistant colonies after the introduction into bacteria carrying a Red expression plasmid of synthetic (PCR-generated) DNA. The resistance genes were then eliminated by using a helper plasmid encoding the FLP recombinase which is also easily curable. This procedure should be widely useful, especially in genome analysis of E. coli and other bacteria because the procedure can be done in wild-type cells.

14,389 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: A practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics, which makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries.
Abstract: The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.

10,947 citations