scispace - formally typeset
Search or ask a question
Author

Douglas B. Kell

Bio: Douglas B. Kell is an academic researcher from University of Liverpool. The author has contributed to research in topics: Dielectric & Systems biology. The author has an hindex of 111, co-authored 634 publications receiving 50335 citations. Previous affiliations of Douglas B. Kell include Max Planck Society & University of Wales.


Papers
More filters
Journal ArticleDOI
TL;DR: The results show increased hypercoagulation, the presence of amyloid formation in plasma, and profound ultrastructural changes to platelets in PD and control blood analysis, substantiating previous findings regarding PD.
Abstract: Parkinson's disease (PD) is a well-known neurodegenerative disease with a strong association established with systemic inflammation. Recently, the role of the gingipain protease group from Porphyromonas gingivalis was implicated in Alzheimer's disease and here we present evidence, using a fluorescent antibody to detect gingipain R1 (RgpA), of its presence in a PD population. To further elucidate the action of this gingipain, as well as the action of the lipopolysaccharide (LPS) from P. gingivalis, low concentrations of recombinant RgpA and LPS were added to purified fluorescent fibrinogen. We also substantiate previous findings regarding PD by emphasizing the presence of systemic inflammation via multiplex cytokine analysis, and demonstrate hypercoagulation using thromboelastography (TEG), confocal and electron microscopy. Biomarker analysis confirmed significantly increased levels of circulating proinflammatory cytokines. In our PD and control blood analysis, our results show increased hypercoagulation, the presence of amyloid formation in plasma, and profound ultrastructural changes to platelets. Our laboratory analysis of purified fibrinogen with added RgpA, and/or LPS, showed preliminary data with regards to the actions of the protease and the bacterial membrane inflammagen on plasma proteins, to better understand the nature of established PD.

64 citations

Journal ArticleDOI
TL;DR: This work considers the co-response of the intermediate metabolite concentration ('pool') and the channel flux to changes in kinetic (or thermodynamic) parameters and shows that the effectiveness of channelling in decreasing a pool, even at constant flux, is very much a reality.

63 citations

Journal ArticleDOI
TL;DR: CellTracker is described, a software tool designed for the automated measurement of the cellular location and intensity of fluorescently tagged proteins that is competitive in accuracy with the manual human analysis of such images but is more than 20 times faster, even on a small task where human fatigue is not an issue.
Abstract: Many intracellular signal transduction processes involve the reversible translocation from the cytoplasm to the nucleus of transcription factors. The advent of fluorescently tagged protein derivatives has revolutionized cell biology, such that it is now possible to follow the location of such protein molecules in individual cells in real time. However, the quantitative analysis of the location of such proteins in microscopic images is very time consuming. We describe CellTracker, a software tool designed for the automated measurement of the cellular location and intensity of fluorescently tagged proteins. CellTracker runs in the MS Windows environment, is freely available (at http://www.dbkgroup.org/celltracker/), and combines automated cell tracking methods with powerful image-processing algorithms that are optimized for these applications. When tested in an application involving the nuclear transcription factor NF-kB, CellTracker is competitive in accuracy with the manual human analysis of such images but is more than 20 times faster, even on a small task where human fatigue is not an issue. This will lead to substantial benefits for time-lapse-based high-content screening.

63 citations

Journal ArticleDOI
TL;DR: A basic principle of microbiology –“one cell-one culture” may not be applicable in some circumstances in which the metabolic activity of “starter” cells is not sufficient to produce enough autocrine growth factor to support cell multiplication.
Abstract: Viable cells of Micrococcus luteus secrete a proteineous growth factor (Rpf) which promotes the resuscitation of dormant, nongrowing cells to yield normal, colony-forming bacteria. When washed M. luteus cells were used as an inoculum, there was a pronounced influence of Rpf on the true lag phase and cell growth on lactate minimal medium. In the absence of Rpf, there was no increase in colony-forming units for up to 10 days. When the inoculum contained less than 105 cells ml–1, macroscopically observable M. luteus growth was not obtained in succinate minimal medium unless Rpf was added. Incubation of M. luteus in the stationary phase for 100 h resulted in a failure of the cells to grow in lactate minimal medium from inocula of small size although the viability of these cells was close to 100% as estimated using agar plates made from lactate minimal medium or rich medium. The underestimation of viable cells by the most-probable-number (MPN) method in comparsion with colony-forming units was equivalent to the requirement that at least 105 cells grown on succinate medium, 103 cells from old stationary phase, or approximately 10–500 washed cells are required per millilitre of inoculum for growth to lead to visible turbidity. The addition of Rpf in the MPN dilutions led to an increase of the viable cell numbers estimated to approximately the same levels as those determined by colony-forming units. Thus, a basic principle of microbiology –“one cell-one culture”– may not be applicable in some circumstances in which the metabolic activity of “starter” cells is not sufficient to produce enough autocrine growth factor to support cell multiplication.

63 citations

Journal ArticleDOI
TL;DR: This work used a multi-objective evolutionary algorithm to optimize reagent combinations from a dynamic chemical library of 33 compounds with established or predicted targets in the regulatory network controlling IL-1β expression to provide a powerful and general approach to the discovery of novel combinations of pharmacological agents with potentially greater therapeutic indices than those of single drugs.
Abstract: The control of biochemical fluxes is distributed, and to perturb complex intracellular networks effectively it is often necessary to modulate several steps simultaneously. However, the number of possible permutations leads to a combinatorial explosion in the number of experiments that would have to be performed in a complete analysis. We used a multiobjective evolutionary algorithm to optimize reagent combinations from a dynamic chemical library of 33 compounds with established or predicted targets in the regulatory network controlling IL-1β expression. The evolutionary algorithm converged on excellent solutions within 11 generations, during which we studied just 550 combinations out of the potential search space of ~9 billion. The top five reagents with the greatest contribution to combinatorial effects throughout the evolutionary algorithm were then optimized pairwise. A p38 MAPK inhibitor together with either an inhibitor of IκB kinase or a chelator of poorly liganded iron yielded synergistic inhibition of macrophage IL-1β expression. Evolutionary searches provide a powerful and general approach to the discovery of new combinations of pharmacological agents with therapeutic indices potentially greater than those of single drugs.

63 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s), which should be widely useful, especially in genome analysis of E. coli and other bacteria.
Abstract: We have developed a simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s). In this procedure, recombination requires the phage lambda Red recombinase, which is synthesized under the control of an inducible promoter on an easily curable, low copy number plasmid. To demonstrate the utility of this approach, we generated PCR products by using primers with 36- to 50-nt extensions that are homologous to regions adjacent to the gene to be inactivated and template plasmids carrying antibiotic resistance genes that are flanked by FRT (FLP recognition target) sites. By using the respective PCR products, we made 13 different disruptions of chromosomal genes. Mutants of the arcB, cyaA, lacZYA, ompR-envZ, phnR, pstB, pstCA, pstS, pstSCAB-phoU, recA, and torSTRCAD genes or operons were isolated as antibiotic-resistant colonies after the introduction into bacteria carrying a Red expression plasmid of synthetic (PCR-generated) DNA. The resistance genes were then eliminated by using a helper plasmid encoding the FLP recombinase which is also easily curable. This procedure should be widely useful, especially in genome analysis of E. coli and other bacteria because the procedure can be done in wild-type cells.

14,389 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: A practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics, which makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries.
Abstract: The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.

10,947 citations