scispace - formally typeset
Search or ask a question
Author

Douglas B. Kell

Bio: Douglas B. Kell is an academic researcher from University of Liverpool. The author has contributed to research in topics: Dielectric & Systems biology. The author has an hindex of 111, co-authored 634 publications receiving 50335 citations. Previous affiliations of Douglas B. Kell include Max Planck Society & University of Wales.


Papers
More filters
Journal ArticleDOI
27 Dec 2005
TL;DR: Analysis of dynamic models of part of the NF-kappaB signalling pathway reveals a level of complexity in these dynamic models that is not apparent from study of their individual parameters alone and point to the value of manipulating multiple elements of complex networks to achieve desired physiological effects.
Abstract: In previous work, we studied the behaviour of a model of part of the NF-kappaB signalling pathway. The model displayed oscillations that varied both in number, amplitude and frequency when its parameters were varied. Sensitivity analysis showed that just nine of the 64 reaction parameters were mainly responsible for the control of the oscillations when these parameters were varied individually. However, the control of the properties of any complex system is distributed, and, as many of these reactions are highly non-linear, we expect that their interactions will be too. Pairwise modulation of these nine parameters gives a search space some 50 times smaller (81 against 4096) than that required for the pairwise modulation of all 64 reactions, and this permitted their study (which would otherwise have been effectively intractable). Strikingly synergistic effects were observed, in which the effect of one of the parameters was strongly (and even qualitatively) dependent on the values of another parameter. Regions of parameter space could be found in which the amplitude, but not the frequency (timing), of oscillations varied, and vice versa. Such modelling will permit the design and performance of experiments aimed at disentangling the role of the dynamics of oscillations, rather than simply their amplitude, in determining cell fate. Overall, the analyses reveal a level of complexity in these dynamic models that is not apparent from study of their individual parameters alone and point to the value of manipulating multiple elements of complex networks to achieve desired physiological effects.

57 citations

Journal ArticleDOI
01 Jan 1985
TL;DR: The basis for the view that the static capacitance of bioraembranes is as great as 1 fiF/cm2 is doubted; contributions from the (partially restricted) motions of membrane components, and of double-layer ions, probably contribute to this apparent value in biorAembrane vesicle suspensions.
Abstract: The possible bases for field-mediated effects on cellular processes are reflected in the passive electrical properties of biological systems. The historical, present and prospective utility of dielectric spectroscopy in assessing the static and dynamic organisation of biological membranes is reviewed within this context. The basis for the view that the static capacitance of bioraembranes is as great as 1 fiF/cm2 is doubted; contributions from the (partially restricted) motions of membrane components, and of double-layer ions, probably contribute to this apparent value in bioraembrane vesicle suspensions. The importance of improving our knowledge of the static electrical capacitance of energy coupling membranes is stressed. Theoretical and experimental procedures for assessing the contribution of rotational and translational motions of membrane components, and of double-layer/membrane interactions, to dielectric spectra in the approximate frequency range 10 to 107 Hz are described. Finally, three outstandi...

57 citations

Journal ArticleDOI
TL;DR: A novel scanning electron microscopy method is applied for assessing the role of functional chelation in the prevention or reversal of iron-induced fibrin formation and shows that iron-chelating agents are effective inhibitors of DMD formation.
Abstract: Aims: Inflammatory diseases associated with iron overload are characterized by a changed coagulation profile, where there is a persistent presence of fibrin-like material of dense-matted deposits (DMDs). It is believed that one source of such material is a result of the activation of blood coagulation without the generation of thrombin, causing clots to become resistant to fibrinolytic dissolution. The aim of the current manuscript therefore is to apply a novel scanning electron microscopy method for assessing the role of functional chelation in the prevention or reversal of iron-induced fibrin formation.Methods and results: Purified fibrinogen and platelet-rich plasma were exposed to chelating agents followed by iron, to determine the chelating effects. We show that there is another, pathological pathway of fibrin formation initiated by free iron (initially as Fe (III)), leading to the formation of highly reactive oxygen species such as the hydroxyl radical that can oxidize and insolubilize prote...

57 citations

Journal ArticleDOI
TL;DR: There is an emerging recognition of the importance of modelling large‐scale biochemical systems, with the ‘digital human’ an obviously desirable goal, and existing and developing standards are beginning to permit the principled storage and exchange of biochemical network models.
Abstract: There is an emerging recognition of the importance of modelling large-scale biochemical systems, with the 'digital human' an obviously desirable goal. This will then permit researchers to analyse the behaviour of such systems in silico so as to be able to perform 'what-if?' experiments prior to determining whether they are actually worthwhile or not, and for understanding whether a particular model does in fact describe or predict experimental observations. Existing and developing standards such as SBML are beginning to permit the principled storage and exchange of biochemical network models, while environments for effecting distributed workflows (such as Taverna) will allow us to link together these models and their behaviour. This allows the local experts to work on those parts of cellular or organellar biochemistry on which they have most expertise, while making their results available to the community as a whole. This kind of architecture permits the distributed yet integrated goal of an evolving 'digital human' model to be realized.

57 citations

Journal ArticleDOI
TL;DR: It was concluded that the predominant inhibitory effects on this organism of media of high solute content are due not to the low water activity of such media per se, but to the creation of an osmotic pressure across the bacterial cytoplasmic membrane, which acts to inhibit the glucose PTS by which the organism effects glucose uptake.
Abstract: Growth of Clostridium pasteurianum was inhibited in media of high solute content. At equal osmolarities, ‘permeant’ solutes (glycerol and acetamide) were much less growth-inhibitory than ‘non-permeant’ solutes (KC1 and xylitol). Glycolysis by washed cell suspensions was inhibited by these solutes in parallel with growth. However, in their inhibition of glucose 6-phosphate dissimilation by permeabilized cells the distinction between ‘permeant’ and ‘impermeant’ solutes was significantly less marked. The glucose phosphotransferase system (PTS) of intact cells was much more strongly inhibited by ‘non-permeant’ than by ‘permeant’ solutes. It was concluded that the predominant inhibitory effects on this organism of media of high solute content are due not to the low water activity of such media per se, but to the creation of an osmotic pressure across the bacterial cytoplasmic membrane, which acts to inhibit the glucose PTS by which the organism effects glucose uptake. Parallel measurements of the effects of xylitol on both glycolysis and the activity of the glucose PTS suggested that despite this correlation between the osmotic inhibition of growth, glycolysis and the PTS, the flux-control coefficient of the PTS on glycolysis did not exceed 0.2 under the conditions used.

57 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s), which should be widely useful, especially in genome analysis of E. coli and other bacteria.
Abstract: We have developed a simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s). In this procedure, recombination requires the phage lambda Red recombinase, which is synthesized under the control of an inducible promoter on an easily curable, low copy number plasmid. To demonstrate the utility of this approach, we generated PCR products by using primers with 36- to 50-nt extensions that are homologous to regions adjacent to the gene to be inactivated and template plasmids carrying antibiotic resistance genes that are flanked by FRT (FLP recognition target) sites. By using the respective PCR products, we made 13 different disruptions of chromosomal genes. Mutants of the arcB, cyaA, lacZYA, ompR-envZ, phnR, pstB, pstCA, pstS, pstSCAB-phoU, recA, and torSTRCAD genes or operons were isolated as antibiotic-resistant colonies after the introduction into bacteria carrying a Red expression plasmid of synthetic (PCR-generated) DNA. The resistance genes were then eliminated by using a helper plasmid encoding the FLP recombinase which is also easily curable. This procedure should be widely useful, especially in genome analysis of E. coli and other bacteria because the procedure can be done in wild-type cells.

14,389 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: A practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics, which makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries.
Abstract: The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.

10,947 citations