scispace - formally typeset
Search or ask a question
Author

Douglas Edmonds

Bio: Douglas Edmonds is an academic researcher from Virginia Tech. The author has contributed to research in topics: Cosmic Origins Spectrograph & Galaxy. The author has an hindex of 4, co-authored 5 publications receiving 208 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analysis of the UV spectrum of the low-z AGN IRAS F22456?5125 obtained with the Cosmic Origins Spectrograph on board the Hubble Space Telescope is presented.
Abstract: We present analysis of the UV spectrum of the low-z AGN IRAS F22456?5125 obtained with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The spectrum reveals six main kinematic components, spanning a range of velocities of up to 800?km?s?1, which for the first time are observed in troughs associated with C II, C IV, N V, Si II, Si III, Si IV, and S IV. We also obtain data on the O VI troughs, which we compare to those available from an earlier Far Ultraviolet Spectroscopic Explorer epoch. Column densities measured from these ions allow us to derive a well-constrained photoionization solution for each outflow component. Two of these kinematic components show troughs associated with transitions from excited states of Si II and C II. The number density inferred from these troughs, in combination with the deduced ionization parameter, allows us to determine the distance to these outflow components from the central source. We find these components to be at a distance of ~10?kpc. The distances and the number densities derived are consistent with the outflow being part of a galactic wind.

81 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented medium-resolution ultraviolet spectra covering the 1155-1760 A spectral range of the Seyfert 1 galaxy Mrk 509 obtained using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST).
Abstract: We present medium-resolution (!/ ! ! " 20,000) ultraviolet spectra covering the 1155‐1760 A spectral range of the Seyfert 1 galaxy Mrk 509 obtained using the Cosmic Origins Spectrograph (COS )o n the Hubble Space Telescope (HST). Our observations were obtained simultaneously with a Low Energy Transmission Grating Spectrometer observation using the Chandra X-ray Observatory, and they are part of a multiwavelength campaign in September through December 2009 which also included observations with XMM-Newton ,S wift, and INTEGRAL. Our spectra are the highest signal-to-noise observations to date of the intrinsic absorption components seen in numerous prior ultraviolet observations. To take advantage of the high signal-to-noise ratio, we describe special calibrations for wavelength, flat-field and line-spread function corrections that we applied to the COS data. We detect additional complexity in the absorption troughs compared to prior observations made with the Space Telescope Imaging Spectrograp h( STIS) on HST. We attribute the UV absorption to a variety of sources in Mrk 509, including an outflow from the active nucleus, the interstellar medium and halo of the host galaxy, and possible infalling clouds or stripped gaseous material from a merger that are illuminated by the ionizing radiation of the active nucleus. Variability between the STIS and COS observation of the most blue-shifted component (#1) allows us to set an upper limit on its distance of < 250 pc. Similarly, variability of component 6 between FUSE observations limits its distance to < 1.5 kpc. The absorption lines in all components only partially cover the emission from the active nucleus with covering fractions that are lower than those seen in the prio rS TIS observations and are comparable to those seen in spectra from the Far Ultraviolet Spectroscopic Explorer (FUSE). Given the larger apertures of COS and FUSE compared to STIS, we favor scattered light from an extended region near the active nucleus as the explanation for the partial covering. As observed in prior X-ray and UV spectra, the UV absorption has velocities comparable to the X-ray absorption, but the bulk of the ultraviolet absorptio ni s in al ower ionization state with lower total column density than the ga sr esponsible for the X-ray absorption. We conclude that theoutflow from the active nucleus is a multiphase wind.

59 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis of the UV-spectrum of the low-z AGN IRAS-F22456-5125 obtained with the Cosmic Origins Spectrograph on board the Hubble Space Telescope is presented.
Abstract: We present analysis of the UV-spectrum of the low-z AGN IRAS-F22456-5125 obtained with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The spectrum reveals six main kinematic components, spanning a range of velocities of up to 800 km s-1, which for the first time are observed in troughs associated with CII, CIV, NV, SiII, SiIII, SiIV and SIV. We also obtain data on the OVI troughs, which we compare to those available from an earlier FUSE epoch. Column densities measured from these ions allow us to derive a well-constrained photoionization solution for each outflow component. Two of these kinematic components show troughs associated with transitions from excited states of SiII\ and CII. The number density inferred from these troughs, in combination with the deduced ioinization parameter, allows us to determine the distance to these outflow components from the central source. We find these components to be at a distance of ~ 10 kpc. The distances and the number densities derived are consistent with the outflow being part of a galactic wind.

50 citations

Journal ArticleDOI
TL;DR: In this article, a study of broad absorption line (BAL) quasar outflows that show S IV λ1063 and S IV* λ 1073 troughs is presented.
Abstract: We present a study of broad absorption line (BAL) quasar outflows that show S IV λ1063 and S IV* λ1073 troughs. The fractional abundances of S IV and C IV peak at similar value of the ionization parameter, implying that they arise from the same physical component of the outflow. Detection of the S IV* troughs will allow us to determine the distance to this gas with higher resolution and higher signal-to-noise spectra, therefore providing the distance and energetics of the ubiquitous C IV BAL outflows. In our bright sample of 156 SDSS quasars, 14% show C IV and 1.9% S IV troughs, which are consistent with a fainter magnitude sample with twice as many objects. One object in the fainter sample shows evidence of a broad S IV trough without any significant trough present from the excited state line, which implies that this outflow could be at a distance of several kpc. Given the fractions of C IV and S IV, we establish firm limits on the global covering factor on S IV that ranges from 2.8% to 21% (allowing for the k-correction). Comparison of the expected optical depth for these ions with their detected percentage suggests that these species arise from common outflows with a covering factor closer to the latter.

28 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a study of broad absorption line (BAL) quasar outflows that show S IV?1063 and S IV*?1073 troughs.
Abstract: We present a study of Broad Absorption Line (BAL) quasar outflows that show S IV ?1063 and S IV* ?1073 troughs. The fractional abundance of S IV and C IV peak at similar value of the ionization parameter, implying that they arise from the same physical component of the outflow. Detection of the S IV* troughs will allow us to determine the distance to this gas with higher resolution and higher signal-to-noise spectra, therefore providing the distance and energetics of the ubiquitous C IV BAL outflows. In our bright sample of 156 SDSS quasars 14% show C IV and 1.9% S IV troughs, which is consistent with a fainter magnitude sample with twice as many objects. One object in the fainter sample shows evidence of a broad S IV trough without any significant trough present from the excited state line, which implies that this outflow could be at a distance of several kpc. Given the fractions of C IV and S IV, we establish firm limits on the global covering factor on S IV that ranges from 2.8% to 21% (allowing for the k-correction). Comparison of the expected optical depth for these ions with their detected percentage suggests that these species arise from common outflows with a covering factor closer to the latter.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a picture in which the population of active galactic nuclei (AGNs) can be divided into two distinct populations: radiative-mode AGNs are associated with black holes that produce radiant energy powered by accretion at rates in excess of ∼ 1% of the Eddington limit.
Abstract: We summarize what large surveys of the contemporary Universe have taught us about the physics and phenomenology of the processes that link the formation and evolution of galaxies with their central supermassive black holes. We present a picture in which the population of active galactic nuclei (AGNs) can be divided into two distinct populations. The radiative-mode AGNs are associated with black holes (BHs) that produce radiant energy powered by accretion at rates in excess of ∼1% of the Eddington limit. They are primarily associated with less massive BHs growing in high-density pseudobulges at a rate sufficient to produce the total mass budget in these BHs in ∼10 Gyr. The circumnuclear environment contains high-density cold gas and associated star formation. Major mergers are not the primary mechanism for transporting this gas inward; secular processes appear dominant. Stellar feedback is generic in these objects, and strong AGN feedback is seen only in the most powerful AGNs. In jet-mode AGNs the bulk of...

898 citations

Journal ArticleDOI
TL;DR: In this paper, the authors calculate the evolution of heavy element abundances from C to Zn in the solar neighborhood adopting their new nucleosynthesis yields, based on the light curve and spectra fitting of individual supernovae.
Abstract: We calculate the evolution of heavy element abundances from C to Zn in the solar neighborhood adopting our new nucleosynthesis yields. Our yields are calculated for wide ranges of metallicity (Z=0-Z_\odot) and the explosion energy (normal supernovae and hypernovae), based on the light curve and spectra fitting of individual supernovae. The elemental abundance ratios are in good agreement with observations. Among the alpha-elements, O, Mg, Si, S, and Ca show a plateau at [Fe/H] < -1, while Ti is underabundant overall. The observed abundance of Zn ([Zn/Fe] ~ 0) can be explained only by the high energy explosion models, which requires a large contribution of hypernovae. The observed decrease in the odd-Z elements (Na, Al, and Cu) toward low [Fe/H] is reproduced by the metallicity effect on nucleosynthesis. The iron-peak elements (Cr, Mn, Co, and Ni) are consistent with the observed mean values at -2.5 < [Fe/H] < -1$, and the observed trend at the lower metallicity can be explained by the energy effect. We also show the abundance ratios and the metallicity distribution functions of the Galactic bulge, halo, and thick disk. Our results suggest that the formation timescale of the thick disk is ~ 1-3 Gyr.

500 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the methods used to constrain the chemical enrichment in galaxies and their environment, and discuss the observed scaling relations between metallicity and galaxy properties, the observed relative chemical abundances, how the chemical elements are distributed within galaxies, and how these properties evolve across the cosmic epochs.
Abstract: The evolution of the content of heavy elements in galaxies, the relative chemical abundances, their spatial distribution, and how these scale with various galactic properties, provide unique information on the galactic evolutionary processes across the cosmic epochs. In recent years major progress has been made in constraining the chemical evolution of galaxies and inferring key information relevant to our understanding of the main mechanisms involved in galaxy evolution. In this review we provide an overview of these various areas. After an overview of the methods used to constrain the chemical enrichment in galaxies and their environment, we discuss the observed scaling relations between metallicity and galaxy properties, the observed relative chemical abundances, how the chemical elements are distributed within galaxies, and how these properties evolve across the cosmic epochs. We discuss how the various observational findings compare with the predictions from theoretical models and numerical cosmological simulations. Finally, we briefly discuss the open problems and the prospects for major progress in this field in the nearby future.

257 citations

Journal ArticleDOI
TL;DR: In this article, absorption troughs from three important ions are measured: O IV and O IV* that allow us to obtain the distance of high ionization outflows from the AGN; second, Ne VIII and Mg X that are sensitive to the very high ionisation phase of the outflow.
Abstract: Spectroscopic observations of quasar outflows at rest-frame 500-1000 Angstrom have immense diagnostic power. We present analyses of such data, where absorption troughs from three important ions are measured: first, O IV and O IV* that allow us to obtain the distance of high ionization outflows from the AGN; second, Ne VIII and Mg X that are sensitive to the very high ionization phase of the outflow. Their inferred column densities, combined with those of troughs from O VI, N IV, and H I, yield two important results: 1) The outflow shows two ionization phases, where the high ionization phase carries the bulk of the material. This is similar to the situation seen in x-ray warm absorber studies. Furthermore, the low ionization phase is inferred to have a volume filling factor of 10^(-5)-10^(-6). 2) From the O IV to O IV* column density ratio, and the knowledge of the ionization parameter, we determine a distance of 3000 pc. from the outflow to the central source. Since this is a typical high ionization outflow, we can determine robust values for the mass flux and kinetic luminosity of the outflow: 40 solar masses per year and 10^45 ergs/s, respectively, where the latter is roughly equal to 1% of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high ionization wind suggests that quasar outflows are a major contributor to AGN feedback mechanisms.

205 citations

Journal ArticleDOI
18 Nov 2011-Science
TL;DR: Using ultraviolet absorption spectroscopy, it is shown that “warm-hot” plasma at 105.5 kelvin contains 10 to 150 times more mass than the cold gas in a post-starburst galaxy wind.
Abstract: Outflowing winds of multiphase plasma have been proposed to regulate the buildup of galaxies, but key aspects of these outflows have not been probed with observations. By using ultraviolet absorption spectroscopy, we show that “warm-hot” plasma at 105.5 kelvin contains 10 to 150 times more mass than the cold gas in a post-starburst galaxy wind. This wind extends to distances > 68 kiloparsecs, and at least some portion of it will escape. Moreover, the kinematical correlation of the cold and warm-hot phases indicates that the warm-hot plasma is related to the interaction of the cold matter with a hotter (unseen) phase at >>106 kelvin. Such multiphase winds can remove substantial masses and alter the evolution of post-starburst galaxies.

201 citations