scispace - formally typeset
Search or ask a question
Author

Douglas F. Covey

Bio: Douglas F. Covey is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Neuroactive steroid & GABAA receptor. The author has an hindex of 60, co-authored 367 publications receiving 13026 citations. Previous affiliations of Douglas F. Covey include University of Texas Health Science Center at San Antonio & Columbia University.


Papers
More filters
Journal ArticleDOI
24 Mar 2017-Science
TL;DR: Cholesterol is identified, an essential building block for cellular growth, as a nutrient input that drives mTORC1 recruitment and activation at the lysosomal surface and the SLC38A9-NPC1 complex, which is key to the ability of m TORC1 to respond to variations in dietary lipid supply.
Abstract: The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that becomes activated at the lysosome in response to nutrient cues. Here, we identify cholesterol, an essential building block for cellular growth, as a nutrient input that drives mTORC1 recruitment and activation at the lysosomal surface. The lysosomal transmembrane protein, SLC38A9, is required for mTORC1 activation by cholesterol through conserved cholesterol-responsive motifs. Moreover, SLC38A9 enables mTORC1 activation by cholesterol independently from its arginine-sensing function. Conversely, the Niemann-Pick C1 (NPC1) protein, which regulates cholesterol export from the lysosome, binds to SLC38A9 and inhibits mTORC1 signaling through its sterol transport function. Thus, lysosomal cholesterol drives mTORC1 activation and growth signaling through the SLC38A9-NPC1 complex.

350 citations

Journal Article
TL;DR: The results indicate that pentylenetetrazole and picrotoxin interact with overlapping but distinct domains of the GABA(A) receptor, and PTZ decreased open probability by increasing the duration of closed states but had no effect on single-channel conductance or open state duration.
Abstract: Pentylenetetrazole (PTZ) is a central nervous system convulsant that is thought, based on binding studies, to act at the picrotoxin (PTX) site of the gamma-aminobutyric acid type A (GABA(A)) receptor. In the present study, we have investigated the mechanism and site of action of PTZ in recombinant GABA(A) receptors. In rat alpha 1 beta 2 gamma 2 receptors, PTZ inhibited GABA-activated Cl(-) current in a concentration-dependent, voltage-independent manner, with an IC(50) of 0.62 +/- 0.13 mM. The mechanism of inhibition appeared competitive with respect to GABA in both rat and human alpha 1 beta 2 gamma 2 receptors. Varying subunit configuration (change or lack of alpha subunit isoform or lack of gamma 2 subunit) had modest effects on PTZ-induced inhibition, as evidenced by comparable IC(50) values (0.6-2.2 mM) in all receptor configurations tested. This contrasts with PTX and other PTX-site ligands, which have greater affinity in receptors lacking an alpha subunit. Using a one-site model for PTZ interaction with alpha 1 beta 2 gamma 2 receptors, the association rate (k(+1)) was found to be 1.14 x 10(3) M(-1) s(-1) and the dissociation rate (k(-1)) was 0.476 s(-1), producing a functional k(d) of 0.418 mM. PTZ could only gain access to its binding site extracellularly. Single-channel recordings demonstrated that PTZ decreased open probability by increasing the duration of closed states but had no effect on single-channel conductance or open state duration. alpha-Isopropyl-alpha-methyl-gamma-butyrolactone, a compound known to antagonize effects of PTX, also diminished the effects of PTZ. Taken together, our results indicate that pentylenetetrazole and picrotoxin interact with overlapping but distinct domains of the GABA(A) receptor.

336 citations

Journal ArticleDOI
24 Jan 2013-Immunity
TL;DR: A cellular antiviral role for macrophage production of 25-hydroxycholesterol as a component of the sterol metabolic network linked to the IFN response via Stat1 is reported, and 25HC is described as a sterol-lipid effector of an innate immune pathway.

318 citations

Journal ArticleDOI
28 Jul 2016-Nature
TL;DR: The results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains.
Abstract: Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzledclass G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked a top the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD-linker domain-TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains.

291 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a biophysical model to explain the mechanism of ER calcium depletion in advanced atherosclerotic lesions by showing that FC enrichment of the endoplasmic reticulum (ER) with ent-cholesterol or 14:0-18:0 phosphatidylcholine, which possess the membrane-ordering properties of cholesterol, inhibited SERCA2b.

282 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids.
Abstract: The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways - cumulatively called the unfolded protein response (UPR). Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids. The arms of the UPR are integrated to provide a response that remodels the secretory apparatus and aligns cellular physiology to the demands imposed by ER stress.

5,701 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: In the endoplasmic reticulum (ER), secretory and transmembrane proteins fold into their native conformation and undergo posttranslational modifications important for their activity and structure as mentioned in this paper.
Abstract: In the endoplasmic reticulum (ER), secretory and transmembrane proteins fold into their native conformation and undergo posttranslational modifications important for their activity and structure. When protein folding in the ER is inhibited, signal transduction pathways, which increase the biosynthetic capacity and decrease the biosynthetic burden of the ER to maintain the homeostasis of this organelle, are activated. These pathways are called the unfolded protein response (UPR). In this review, we briefly summarize principles of protein folding and molecular chaperone function important for a mechanistic understanding of UPR-signaling events. We then discuss mechanisms of signal transduction employed by the UPR in mammals and our current understanding of the remodeling of cellular processes by the UPR. Finally, we summarize data that demonstrate that UPR signaling feeds into decision making in other processes previously thought to be unrelated to ER function, e.g., eukaryotic starvation responses and differentiation programs.

2,892 citations

Journal ArticleDOI
TL;DR: This review begins by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production and describes ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the Jak-STAT pathway.
Abstract: Interferon-stimulated gene (ISG) products take on a number of diverse roles. Collectively, they are highly effective at resisting and controlling pathogens. In this review, we begin by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production. Next, we describe ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the JAK-STAT pathway. Several ISGs that directly inhibit virus infection are described with an emphasis on those that impact early and late stages of the virus life cycle. Finally, we describe ongoing efforts to identify and characterize antiviral ISGs, and we provide a forward-looking perspective on the ISG landscape.

2,207 citations

Proceedings Article
01 Jan 1994
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.

2,134 citations