scispace - formally typeset
Search or ask a question
Author

Douglas H. Lowndes

Bio: Douglas H. Lowndes is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Thin film & Carbon nanofiber. The author has an hindex of 38, co-authored 126 publications receiving 5996 citations. Previous affiliations of Douglas H. Lowndes include Battelle Memorial Institute & Baylor University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the application areas for carbon nanotubes and nanofibers including electron field-emission sources, electrochemical probes, functionalized sensor elements, scanning probe microscopy tips, nanoelectromechanical systems (NEMS), hydrogen and charge storage, and catalyst support.
Abstract: The controlled synthesis of materials by methods that permit their assembly into functional nanoscale structures lies at the crux of the emerging field of nanotechnology. Although only one of several materials families is of interest, carbon-based nanostructured materials continue to attract a disproportionate share of research effort, in part because of their wide-ranging properties. Additionally, developments of the past decade in the controlled synthesis of carbon nanotubes and nanofibers have opened additional possibilities for their use as functional elements in numerous applications. Vertically aligned carbon nanofibers (VACNFs) are a subclass of carbon nanostructured materials that can be produced with a high degree of control using catalytic plasma-enhanced chemical-vapor deposition (C-PECVD). Using C-PECVD the location, diameter, length, shape, chemical composition, and orientation can be controlled during VACNF synthesis. Here we review the CVD and PECVD systems, growth control mechanisms, catalyst preparation, resultant carbon nanostructures, and VACNF properties. This is followed by a review of many of the application areas for carbon nanotubes and nanofibers including electron field-emission sources, electrochemical probes, functionalized sensor elements, scanning probe microscopy tips, nanoelectromechanical systems (NEMS), hydrogen and charge storage, and catalyst support. We end by noting gaps in the understanding of VACNF growth mechanisms and the challenges remaining in the development of methods for an even more comprehensive control of the carbon nanofiber synthesis process.

684 citations

Journal ArticleDOI
27 Jan 2005-Nature
TL;DR: The data reveal that the specific interface structure and local asymmetries play an unexpected role in the polarization enhancement, and it is shown that even superlattices containing only single-unit-cell layers of BaTiO3 in a paraelectric matrix remain ferroelectric.
Abstract: Theoretical predictions--motivated by recent advances in epitaxial engineering--indicate a wealth of complex behaviour arising in superlattices of perovskite-type metal oxides These include the enhancement of polarization by strain and the possibility of asymmetric properties in three-component superlattices Here we fabricate superlattices consisting of barium titanate (BaTiO3), strontium titanate (SrTiO3) and calcium titanate (CaTiO3) with atomic-scale control by high-pressure pulsed laser deposition on conducting, atomically flat strontium ruthenate (SrRuO3) layers The strain in BaTiO3 layers is fully maintained as long as the BaTiO3 thickness does not exceed the combined thicknesses of the CaTiO3 and SrTiO3 layers By preserving full strain and combining heterointerfacial couplings, we find an overall 50% enhancement of the superlattice global polarization with respect to similarly grown pure BaTiO3, despite the fact that half the layers in the superlattice are nominally non-ferroelectric We further show that even superlattices containing only single-unit-cell layers of BaTiO3 in a paraelectric matrix remain ferroelectric Our data reveal that the specific interface structure and local asymmetries play an unexpected role in the polarization enhancement

596 citations

Journal ArticleDOI
16 Aug 1996-Science
TL;DR: Cluster-assembled nanocrystalline and composite films offer opportunities to control and produce new combinations of properties with PLD, and artificially layered materials and metastable phases have been created and their properties varied by control of the layer thicknesses.
Abstract: Pulsed laser deposition (PLD) is a conceptually and experimentally simple yet highly versatile tool for thin-film and multilayer research. Its advantages for the film growth of oxides and other chemically complex materials include stoichiometric transfer, growth from an energetic beam, reactive deposition, and inherent simplicity for the growth of multilayered structures. With the use of PLD, artificially layered materials and metastable phases have been created and their properties varied by control of the layer thicknesses. In situ monitoring techniques have provided information about the role of energetic species in the formation of ultrahard phases and in the doping of semiconductors. Cluster-assembled nanocrystalline and composite films offer opportunities to control and produce new combinations of properties with PLD.

586 citations

Journal ArticleDOI
TL;DR: The electrical conductivity of highly textured Yttria Stabilized Zirconia (YSZ) thin films deposited onto a MgO substrate can be enhanced significantly at thickness as mentioned in this paper.

314 citations

Journal ArticleDOI
TL;DR: In this paper, the alignment of carbon nanofibers is explained as a result of a feedback mechanism associated with a nonuniform stress that is created across the interface of the catalyst particle with the CNF due to electrostatic forces.
Abstract: We report experimental evidence showing a direct correlation between the alignment of carbon nanofibers (CNFs) prepared by plasma-enhanced chemical-vapor deposition and the location of the catalyst particle during CNF growth. In particular, we find that CNFs that have a catalyst particle at the tip (i.e., growth proceeds from the tip) align along the electric-field lines, whereas CNFs with the particle at the base (i.e., growth proceeds from the base) grow in random orientations. We propose a model that explains the alignment process as a result of a feedback mechanism associated with a nonuniform stress (part tensile, part compressive) that is created across the interface of the catalyst particle with the CNF due to electrostatic forces. Furthermore, we propose that the alignment seen recently in some dense CNF films is due to a crowding effect and is not directly the result of electrostatic forces.

222 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of diamond-like carbon.
Abstract: Diamond-like carbon (DLC) is a metastable form of amorphous carbon with significant sp3 bonding. DLC is a semiconductor with a high mechanical hardness, chemical inertness, and optical transparency. This review will describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of DLCs. The films have widespread applications as protective coatings in areas, such as magnetic storage disks, optical windows and micro-electromechanical devices (MEMs).

5,400 citations

Journal ArticleDOI
TL;DR: Novel device paradigms based on magnetoelectric coupling are discussed, the key scientific challenges in the field are outlined, and high-quality thin-film multiferroics are reviewed.
Abstract: Multiferroic materials, which show simultaneous ferroelectric and magnetic ordering, exhibit unusual physical properties — and in turn promise new device applications — as a result of the coupling between their dual order parameters. We review recent progress in the growth, characterization and understanding of thin-film multiferroics. The availability of high-quality thin-film multiferroics makes it easier to tailor their properties through epitaxial strain, atomic-level engineering of chemistry and interfacial coupling, and is a prerequisite for their incorporation into practical devices. We discuss novel device paradigms based on magnetoelectric coupling, and outline the key scientific challenges in the field.

3,472 citations

Journal ArticleDOI
TL;DR: Recent technical advances in the atomic-scale synthesis of oxide heterostructures have provided a fertile new ground for creating novel states at their interfaces, with characteristic feature is the reconstruction of the charge, spin and orbital states at interfaces on the nanometre scale.
Abstract: Recent technical advances in the atomic-scale synthesis of oxide heterostructures have provided a fertile new ground for creating novel states at their interfaces. Different symmetry constraints can be used to design structures exhibiting phenomena not found in the bulk constituents. A characteristic feature is the reconstruction of the charge, spin and orbital states at interfaces on the nanometre scale. Examples such as interface superconductivity, magneto-electric coupling, and the quantum Hall effect in oxide heterostructures are representative of the scientific and technological opportunities in this rapidly emerging field.

2,037 citations

Journal ArticleDOI
TL;DR: In this paper, highly crystalline monoclinic and tetragonal BiVO4 photocatalysts were obtained by the reaction of layered potassium vanadate powder (KV3O8 and K3V5O14) with Bi(NO3)3 for 3 days in aqueous media at room temperature.
Abstract: BiVO4 photocatalysts for O2 evolution, which work under visible light irradiation, were prepared by an aqueous process. The BiVO4 photocatalysts were obtained by the reaction of layered potassium vanadate powder (KV3O8 and K3V5O14) with Bi(NO3)3 for 3 days in aqueous media at room temperature. Highly crystalline monoclinic and tetragonal BiVO4 were selectively synthesized by changing the ratio of vanadium to bismuth in the starting materials. X-ray diffraction and scanning electron microscopy measurements showed that the monoclinic BiVO4 was formed via a tetragonal BiVO4 intermediate. Tetragonal BiVO4 with a 2.9 eV band gap mainly possessed an ultraviolet absorption band while monoclinic BiVO4 with a 2.4 eV band gap had a characteristic visible light absorption band in addition to the UV band. The UV bands observed in the tetragonal and monoclinic BiVO4 were assigned to the band transition from O2p to V3d whereas the visible light absorption was due to the transition from a valence band formed by Bi6s or ...

1,761 citations

Journal ArticleDOI
TL;DR: An overview of the state of the art in ferroelectric thin films is presented in this paper, where the authors review applications: micro-systems' applications, applications in high frequency electronics, and memories based on Ferroelectric materials.
Abstract: An overview of the state of art in ferroelectric thin films is presented. First, we review applications: microsystems' applications, applications in high frequency electronics, and memories based on ferroelectric materials. The second section deals with materials, structure (domains, in particular), and size effects. Properties of thin films that are important for applications are then addressed: polarization reversal and properties related to the reliability of ferroelectric memories, piezoelectric nonlinearity of ferroelectric films which is relevant to microsystems' applications, and permittivity and loss in ferroelectric films-important in all applications and essential in high frequency devices. In the context of properties we also discuss nanoscale probing of ferroelectrics. Finally, we comment on two important emerging topics: multiferroic materials and ferroelectric one-dimensional nanostructures. (c) 2006 American Institute of Physics.

1,632 citations