scispace - formally typeset
Search or ask a question
Author

Douglas J. DeFrees

Bio: Douglas J. DeFrees is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Kinetic isotope effect & Molecular orbital. The author has an hindex of 19, co-authored 32 publications receiving 7378 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the 631G* and 6 31G* basis sets were extended through the second-row of the periodic table and the Hartree-Fock wave functions were used to obtain the equilibrium geometries for one-heavy-atom hydrides.
Abstract: The 6‐31G* and 6‐31G** basis sets previously introduced for first‐row atoms have been extended through the second‐row of the periodic table. Equilibrium geometries for one‐heavy‐atom hydrides calculated for the two‐basis sets and using Hartree–Fock wave functions are in good agreement both with each other and with the experimental data. HF/6‐31G* structures, obtained for two‐heavy‐atom hydrides and for a variety of hypervalent second‐row molecules, are also in excellent accord with experimental equilibrium geometries. No large deviations between calculated and experimental single bond lengths have been noted, in contrast to previous work on analogous first‐row compounds, where limiting Hartree–Fock distances were in error by up to a tenth of an angstrom. Equilibrium geometries calculated at the HF/6‐31G level are consistently in better agreement with the experimental data than are those previously obtained using the simple split‐valance 3‐21G basis set for both normal‐ and hypervalent compounds. Normal‐mode vibrational frequencies derived from 6‐31G* level calculations are consistently larger than the corresponding experimental values, typically by 10%–15%; they are of much more uniform quality than those obtained from the 3‐21G basis set. Hydrogenation energies calculated for normal‐ and hypervalent compounds are in moderate accord with experimental data, although in some instances large errors appear. Calculated energies relating to the stabilities of single and multiple bonds are in much better accord with the experimental energy differences.

6,870 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a modified basis set of supplementary diffuse s and p functions, multiple polarization functions (double and triple sets of d functions), and higher angular momentum polarization functions were defined for use with the 6.31G and 6.311G basis sets.
Abstract: Standard sets of supplementary diffuse s and p functions, multiple polarization functions (double and triple sets of d functions), and higher angular momentum polarization functions (f functions) are defined for use with the 6‐31G and 6‐311G basis sets. Preliminary applications of the modified basis sets to the calculation of the bond energy and hydrogenation energy of N2 illustrate that these functions can be very important in the accurate computation of reaction energies.

7,230 citations

Journal ArticleDOI
TL;DR: In this article, the 631G* and 6 31G* basis sets were extended through the second-row of the periodic table and the Hartree-Fock wave functions were used to obtain the equilibrium geometries for one-heavy-atom hydrides.
Abstract: The 6‐31G* and 6‐31G** basis sets previously introduced for first‐row atoms have been extended through the second‐row of the periodic table. Equilibrium geometries for one‐heavy‐atom hydrides calculated for the two‐basis sets and using Hartree–Fock wave functions are in good agreement both with each other and with the experimental data. HF/6‐31G* structures, obtained for two‐heavy‐atom hydrides and for a variety of hypervalent second‐row molecules, are also in excellent accord with experimental equilibrium geometries. No large deviations between calculated and experimental single bond lengths have been noted, in contrast to previous work on analogous first‐row compounds, where limiting Hartree–Fock distances were in error by up to a tenth of an angstrom. Equilibrium geometries calculated at the HF/6‐31G level are consistently in better agreement with the experimental data than are those previously obtained using the simple split‐valance 3‐21G basis set for both normal‐ and hypervalent compounds. Normal‐mode vibrational frequencies derived from 6‐31G* level calculations are consistently larger than the corresponding experimental values, typically by 10%–15%; they are of much more uniform quality than those obtained from the 3‐21G basis set. Hydrogenation energies calculated for normal‐ and hypervalent compounds are in moderate accord with experimental data, although in some instances large errors appear. Calculated energies relating to the stabilities of single and multiple bonds are in much better accord with the experimental energy differences.

6,870 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the optimum integer n is approximately the lowest order of the Gorling-Levy perturbation theory which provides a realistic description of the coupling-constant dependence Exc,λ in the range 0≤λ≤1, whence n≊4 for atomization energies of typical molecules.
Abstract: Density functional approximations for the exchange‐correlation energy EDFAxc of an electronic system are often improved by admixing some exact exchange Ex: Exc≊EDFAxc+(1/n)(Ex−EDFAx). This procedure is justified when the error in EDFAxc arises from the λ=0 or exchange end of the coupling‐constant integral ∫10 dλ EDFAxc,λ. We argue that the optimum integer n is approximately the lowest order of Gorling–Levy perturbation theory which provides a realistic description of the coupling‐constant dependence Exc,λ in the range 0≤λ≤1, whence n≊4 for atomization energies of typical molecules. We also propose a continuous generalization of n as an index of correlation strength, and a possible mixing of second‐order perturbation theory with the generalized gradient approximation.

4,535 citations

Journal ArticleDOI
Thomas A. Halgren1
TL;DR: The first published version of the Merck molecular force field (MMFF) is MMFF94 as mentioned in this paper, which is based on the OPLS force field and has been applied to condensed-phase processes.
Abstract: This article introduces MMFF94, the initial published version of the Merck molecular force field (MMFF). It describes the objectives set for MMFF, the form it takes, and the range of systems to which it applies. This study also outlines the methodology employed in parameterizing MMFF94 and summarizes its performance in reproducing computational and experimental data. Though similar to MM3 in some respects, MMFF94 differs in ways intended to facilitate application to condensed-phase processes in molecular-dynamics simulations. Indeed, MMFF94 seeks to achieve MM3-like accuracy for small molecules in a combined “organic/protein” force field that is equally applicable to proteins and other systems of biological significance. A second distinguishing feature is that the core portion of MMFF94 has primarily been derived from high-quality computational data—ca. 500 molecular structures optimized at the HF/6-31G* level, 475 structures optimized at the MP2/6-31G* level, 380 MP2/6-31G* structures evaluated at a defined approximation to the MP4SDQ/TZP level, and 1450 structures partly derived from MP2/6-31G* geometries and evaluated at the MP2/TZP level. A third distinguishing feature is that MMFF94 has been parameterized for a wide variety of chemical systems of interest to organic and medicial chemists, including many that feature frequently occurring combinations of functional groups for which little, if any, useful experimental data are available. The methodology used in parameterizing MMFF94 represents a fourth distinguishing feature. Rather than using the common “functional group” approach, nearly all MMFF parameters have been determined in a mutually consistent fashion from the full set of available computational data. MMFF94 reproduces the computational data used in its parameterization very well. In addition, MMFF94 reproduces experimental bond lengths (0.014 A root mean square [rms]), bond angles (1.2° rms), vibrational frequencies (61 cm−1 rms), conformational energies (0.38 kcal/mol/rms), and rotational barriers (0.39 kcal/mol rms) very nearly as well as does MM3 for comparable systems. MMFF94 also describes intermolecular interactions in hydrogen-bonded systems in a way that closely parallels that given by the highly regarded OPLS force field. © 1996 John Wiley & Sons, Inc.

4,353 citations

Journal ArticleDOI
TL;DR: In this paper, a new theoretical procedure based on ab initio molecular-orbital theory for the calculation of molecular energies of compounds containing first (Li-F) and second row (Na-Cl) atoms is presented.
Abstract: Gaussian-3 theory (G3 theory) for the calculation of molecular energies of compounds containing first (Li–F) and second row (Na–Cl) atoms is presented. This new theoretical procedure, which is based on ab initio molecular-orbital theory, modifies G2 theory [J. Chem. Phys. 94, 7221 (1991)] in several ways including a new sequence of single point energy calculations using different basis sets, a new formulation of the higher level correction, a spin–orbit correction for atoms, and a correction for core correlation. G3 theory is assessed using 299 energies from the G2/97 test set including enthalpies of formation, ionization potentials, electron affinities, and proton affinities. This new procedure corrects many of the deficiencies of G2 theory. There is a large improvement for nonhydrogen systems such as SiF4 and CF4, substituted hydrocarbons, and unsaturated cyclic species. Core-related correlation is found to be a significant factor, especially for species with unsaturated rings. The average absolute devi...

2,620 citations