scispace - formally typeset
Search or ask a question
Author

Douglas J. Tobias

Bio: Douglas J. Tobias is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Molecular dynamics & Aqueous solution. The author has an hindex of 66, co-authored 217 publications receiving 22663 citations. Previous affiliations of Douglas J. Tobias include Louisiana State University & University of Pennsylvania.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a modularly invariant equations of motion are derived that generate the isothermal-isobaric ensemble as their phase space averages, and the resulting methods are tested on two problems, a particle in a one-dimensional periodic potential and a spherical model of C60 in the solid/fluid phase.
Abstract: Modularly invariant equations of motion are derived that generate the isothermal–isobaric ensemble as their phase space averages. Isotropic volume fluctuations and fully flexible simulation cells as well as a hybrid scheme that naturally combines the two motions are considered. The resulting methods are tested on two problems, a particle in a one‐dimensional periodic potential and a spherical model of C60 in the solid/fluid phase.

4,282 citations

Journal ArticleDOI
TL;DR: The presented lipid FF is developed and applied to phospholipid bilayers with both choline and ethanolamine containing head groups and with both saturated and unsaturated aliphatic chains and is anticipated to be of utility for simulations of pure lipid systems as well as heterogeneous systems including membrane proteins.
Abstract: A significant modification to the additive all-atom CHARMM lipid force field (FF) is developed and applied to phospholipid bilayers with both choline and ethanolamine containing head groups and with both saturated and unsaturated aliphatic chains. Motivated by the current CHARMM lipid FF (C27 and C27r) systematically yielding values of the surface area per lipid that are smaller than experimental estimates and gel-like structures of bilayers well above the gel transition temperature, selected torsional, Lennard-Jones and partial atomic charge parameters were modified by targeting both quantum mechanical (QM) and experimental data. QM calculations ranging from high-level ab initio calculations on small molecules to semiempirical QM studies on a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer in combination with experimental thermodynamic data were used as target data for parameter optimization. These changes were tested with simulations of pure bilayers at high hydration of the following six lipids: ...

3,489 citations

Journal ArticleDOI
TL;DR: Explicit reversible integrators, suitable for use in large-scale computer simulations, are derived for extended systems generating the canonical and isothermal-isobaric ensembles.
Abstract: Explicit reversible integrators, suitable for use in large-scale computer simulations, are derived for extended systems generating the canonical and isothermal-isobaric ensembles. The new methods are compared with the standard implicit (iterative) integrators on some illustrative example problems. In addition, modification of the proposed algorithms for multiple time step integration is outlined.

1,564 citations

Journal ArticleDOI
TL;DR: Aqueous ion-containing interfaces are ubiquitous and play a key role in a plethora of physical, chemical, atmospheric, and biological processes, from which just a few illustrative examples are mentioned.
Abstract: Aqueous ion-containing interfaces are ubiquitous and play a key role in a plethora of physical, chemical, atmospheric, and biological processes, from which we mention just a few illustrative examples: (i) Ions at the air/water interface are important for atmospheric chemistry involving ocean surfaces and seawater aerosols, 1-5 as well as that of the Arctic snowpack covered by sea spray. 6,7 (ii) Many salts (such as NaCl) tend to inhibit bubble coalescence, 8-12 which is one of the reasons why foam is formed when waves break in the ocean but not in freshwater lakes. (iii) Brine rejection occurring at the seawater/ice interface has profound climatic effects in polar regions. 13 (iv) The aqueous electrolyte/metal interface is involved in electrode and corrosion processes. 14,15

1,229 citations

Journal ArticleDOI
TL;DR: In this article, the authors present results from theoretical studies of aqueous ionic solvation of alkali halides aimed at developing a microscopic description of structure and dynamics at the interface between air and saliency.
Abstract: We present results from theoretical studies of aqueous ionic solvation of alkali halides aimed at developing a microscopic description of structure and dynamics at the interface between air and sal...

722 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: An overview of the CHARMM program as it exists today is provided with an emphasis on developments since the publication of the original CHARMM article in 1983.
Abstract: CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecu- lar simulation program. It has been developed over the last three decades with a primary focus on molecules of bio- logical interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estima- tors, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numer- ous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.

7,035 citations

Journal ArticleDOI
TL;DR: In this article, an analytical algorithm called SETTLE for resetting the positions and velocities to satisfy the holonomic constraints on the rigid water model is presented, which is based on the Cartesian coordinate system and can be used in place of SHAKE and RATTLE.
Abstract: An analytical algorithm, called SETTLE, for resetting the positions and velocities to satisfy the holonomic constraints on the rigid water model is presented. This method is still based on the Cartesian coordinate system and can be used in place of SHAKE and RATTLE. We implemented this algorithm in the SPASMS package of molecular mechanics and dynamics. Several series of molecular dynamics simulations were carried out to examine the performance of the new algorithm in comparison with the original RATTLE method. It was found that SETTLE is of higher accuracy and is faster than RATTLE with reasonable tolerances by three to nine times on a scalar machine. Furthermore, the performance improvement ranged from factors of 26 to 98 on a vector machine since the method presented is not iterative. © 1992 by John Wiley & Sons, Inc.

6,109 citations