scispace - formally typeset
Search or ask a question
Author

Douglas K. Lilly

Bio: Douglas K. Lilly is an academic researcher from University of Oklahoma. The author has contributed to research in topics: Turbulence & Mesoscale meteorology. The author has an hindex of 32, co-authored 62 publications receiving 5199 citations. Previous affiliations of Douglas K. Lilly include Cooperative Institute for Mesoscale Meteorological Studies & National Center for Atmospheric Research.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors constructed a model to relate, explain and predict features of a radiatively active turbulent cloud layer over the sea and under a strong subsidence inversion.
Abstract: Theoretical models are constructed with the aim of relating, explaining and predicting features of a radiatively active turbulent cloud layer over the sea and under a strong subsidence inversion. Both dry aerosol clouds (no phase change) and wet clouds (with a phase change and latent heat exchanges) are considered. For the wet cloud case an important element of the theory is the requirement that the wet-bulb potential temperature must increase upwards in the inversion. For both cases entrainment of the upper warm air is hypothesized to lie between upper and lower limits determined from the turbulent energy budget. The dry cloud case is solved for both steady state and transient results, with only the transient behaviour depending on the entrainment hypothesis. Only steady state solutions are presented for the more complex wet cloud case and these differ somewhat for the maximum and minimum entrainment limits. Observational data from Oakland, California are used for comparison with those steady state solutions, with results indicating the essential validity of the approach. Detailed comparisons, especially for determination of the most correct entrainment rate, are hampered both by inadequate measurement of the inversion properties and by uncertainties in the net radiation flux leaving the cloud top. Computations of the latter suggest that several presently used radiation models are still in serious disagreement, at least for application to downward flux under an inversion. It is suggested that the present theory provides a partial explanation of the origin of the trade wind inversion.

840 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis is made of Gage's proposal that the horizontal energy spectrum at mesoscale wavelengths is produced by upscale energy transfer through quasi-two-dimensional turbulence.
Abstract: An analysis is made of Gage's proposal that the horizontal energy spectrum at mesoscale wavelengths is produced by upscale energy transfer through quasi-two-dimensional turbulence. It is suggested that principal sources of such energy can be found in decaying convective clouds and thunderstorm anvil outflows. These are believed to evolve similarly to the wake of a moving body in a stably stratified flow. Following the scale analysis by Riley, Metcalfe and Weissman it is expected that, in the presence of strong stratification, initially three-dimensionally isotropic turbulence divides roughly equally into gravity waves and stratified (quasi-two- dimensional) turbulence. The former then propagates away from the generation region, while the latter propagates in spectral space to larger scales, forming the −5/3 upscale transfer spectrum predicted by Kraichnan. Part of the energy of the stratified turbulence is recycled into three-dimensional turbulence by shearing instability, but the upscale escape ...

581 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical model for simulating the flow of stably stratified nonrotating air over finite-amplitude, two-dimensional mountain ranges is developed for accurate treatment of internal dissipation and formulation of an upper boundary region and lateral boundary conditions which allow upward and lateral propagation of wave energy out of the model.
Abstract: A numerical model is developed for simulating the flow of stably stratified nonrotating air over finite-amplitude, two-dimensional mountain ranges. Special attention is paid to accurate treatment of internal dissipation and to formulation of an upper boundary region and lateral boundary conditions which allow upward and lateral propagation of wave energy out of the model. The model is hydrostatic and uses potential temperature for the vertical coordinate. A local adjustment procedure is derived to parameterize low Richardson number instability. The model behavior is tested against analytic theory and then applied to a variety of idealized and real flow situations, leading to some new insights and new questions on the nature of large-amplitude mountain waves. The model proves to be effective in simulating the structure of two observed cases of strong mountain waves with very different characteristics.

369 citations

Journal ArticleDOI
TL;DR: The second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study is described in this article, which consists of nine flights in marine stratocummulus west-southwest of San Diego, California.
Abstract: The second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study is described. The field program consisted of nine flights in marine stratocumulus west-southwest of San Diego, California. The objective of the program was to better understand the physics a n d dynamics of marine stratocumulus. Toward this end special flight strategies, including predominantly nocturnal flights, were employed to optimize estimates of entrainment velocities at cloud-top, large-scale divergence within the boundary layer, drizzle processes in the cloud, cloud microstructure, and aerosol–cloud interactions. Cloud conditions during DYCOMS-II were excellent with almost every flight having uniformly overcast clouds topping a well-mixed boundary layer. Although the emphasis of the manuscript is on the goals and methodologies of DYCOMS-II, some preliminary findings are also presented—the most significant being that the cloud layers appear to entrain less and drizzle more than previous theoretical work led investigat...

364 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed laboratory experiments of non-steady penetrative convection in water that closely simulate the lifting of an atmospheric inversion above heated ground and found that the rate at which kinetic energy is destroyed by the downward heat flux in the vicinity of the inversion base is a very small fraction of the rate that is generated in the lower convective region.
Abstract: Laboratory experiments of non-steady penetrative convection in water are performed that closely simulate the lifting of an atmospheric inversion above heated ground. Vertical profiles of horizontally averaged temperature and heat flux are measured and interpreted. The rate at which kinetic energy is destroyed by the downward heat flux in the vicinity of the inversion base is found to be a very small fraction of the rate at which it is generated in the lower convective region. The interface separating the convective region from the stable region is examined and its rate of rise explained.

279 citations


Cited by
More filters
DOI
01 Jan 2008
TL;DR: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication.
Abstract: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication. Reports in this series are issued by the NCAR Scientific Divisions ; copies may be obtained on request from the Publications Office of NCAR. Designation symbols for the series include: Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

9,022 citations

BookDOI
31 Mar 2010
TL;DR: Semi-supervised learning (SSL) as discussed by the authors is the middle ground between supervised learning (in which all training examples are labeled) and unsupervised training (where no label data are given).
Abstract: In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research. Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction. Adaptive Computation and Machine Learning series

3,773 citations

Journal ArticleDOI
TL;DR: In this article, a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics, including a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized.
Abstract: If model parameterizations of unresolved physics, such as the variety of upper ocean mixing processes, are to hold over the large range of time and space scales of importance to climate, they must be strongly physically based. Observations, theories, and models of oceanic vertical mixing are surveyed. Two distinct regimes are identified: ocean mixing in the boundary layer near the surface under a variety of surface forcing conditions (stabilizing, destabilizing, and wind driven), and mixing in the ocean interior due to internal waves, shear instability, and double diffusion (arising from the different molecular diffusion rates of heat and salt). Mixing schemes commonly applied to the upper ocean are shown not to contain some potentially important boundary layer physics. Therefore a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics. It includes a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized. Expressions for diffusivity and nonlocal transport throughout the boundary layer are given. The diffusivity is formulated to agree with similarity theory of turbulence in the surface layer and is subject to the conditions that both it and its vertical gradient match the interior values at h. This nonlocal “K profile parameterization” (KPP) is then verified and compared to alternatives, including its atmospheric counterparts. Its most important feature is shown to be the capability of the boundary layer to penetrate well into a stable thermocline in both convective and wind-driven situations. The diffusivities of the aforementioned three interior mixing processes are modeled as constants, functions of a gradient Richardson number (a measure of the relative importance of stratification to destabilizing shear), and functions of the double-diffusion density ratio, Rρ. Oceanic simulations of convective penetration, wind deepening, and diurnal cycling are used to determine appropriate values for various model parameters as weak functions of vertical resolution. Annual cycle simulations at ocean weather station Papa for 1961 and 1969–1974 are used to test the complete suite of parameterizations. Model and observed temperatures at all depths are shown to agree very well into September, after which systematic advective cooling in the ocean produces expected differences. It is argued that this cooling and a steady salt advection into the model are needed to balance the net annual surface heating and freshwater input. With these advections, good multiyear simulations of temperature and salinity can be achieved. These results and KPP simulations of the diurnal cycle at the Long-Term Upper Ocean Study (LOTUS) site are compared with the results of other models. It is demonstrated that the KPP model exchanges properties between the mixed layer and thermocline in a manner consistent with observations, and at least as well or better than alternatives.

3,756 citations

Journal ArticleDOI
15 Sep 1989-Science
TL;DR: Increases in aerosol concentrations over the oceans may increase the amount of low-level cloudiness through a reduction in drizzle—a process that regulates the liquid-water content and the energetics of shallow marine clouds—to contribute to a cooling of the earth's surface.
Abstract: Increases in aerosol concentrations over the oceans may increase the amount of low-level cloudiness through a reduction in drizzle—a process that regulates the liquid-water content and the energetics of shallow marine clouds. The resulting increase in the global albedo would be in addition to the increase due to enhancement in reflectivity associated with a decrease in droplet size and would contribute to a cooling of the earth9s surface.

3,562 citations

DOI
01 Jun 2005
TL;DR: The Weather Research and Forecasting (WRF) model as mentioned in this paper was developed as a collaborative effort among the NCAR Mesoscale and Microscale Meteorology (MMM) Division, the National Oceanic and Atmospheric Administration's (NOAA) National Centers for Environmental Prediction (NCEP) and Forecast System Laboratory (FSL), the Department of Defense's Air Force Weather Agency (AFWA) and Naval Research Laboratory (NRL), the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma, and the Federal Aviation Administration (F
Abstract: : The development of the Weather Research and Forecasting (WRF) modeling system is a multiagency effort intended to provide a next-generation mesoscale forecast model and data assimilation system that will advance both the understanding and prediction of mesoscale weather and accelerate the transfer of research advances into operations. The model is being developed as a collaborative effort ort among the NCAR Mesoscale and Microscale Meteorology (MMM) Division, the National Oceanic and Atmospheric Administration's (NOAA) National Centers for Environmental Prediction (NCEP) and Forecast System Laboratory (FSL), the Department of Defense's Air Force Weather Agency (AFWA) and Naval Research Laboratory (NRL), the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma, and the Federal Aviation Administration (FAA), along with the participation of a number of university scientists. The WRF model is designed to be a flexible, state-of-the-art, portable code that is an efficient in a massively parallel computing environment. A modular single-source code is maintained that can be configured for both research and operations. It offers numerous physics options, thus tapping into the experience of the broad modeling community. Advanced data assimilation systems are being developed and tested in tandem with the model. WRF is maintained and supported as a community model to facilitate wide use, particularly for research and teaching, in the university community. It is suitable for use in a broad spectrum of applications across scales ranging from meters to thousands of kilometers. Such applications include research and operational numerical weather prediction (NWP), data assimilation and parameterized-physics research, downscaling climate simulations, driving air quality models, atmosphere-ocean coupling, and idealized simulations (e.g boundary-layer eddies, convection, baroclinic waves).

2,567 citations