scispace - formally typeset
Search or ask a question
Author

Douglas S. Higgins

Bio: Douglas S. Higgins is an academic researcher from Michigan State University. The author has contributed to research in topics: Medicine & Downy mildew. The author has an hindex of 1, co-authored 2 publications receiving 2 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Diaporthe sp.
Abstract: Michigan’s hop acreage ranks fourth nationally, but the state’s growers contend with unique disease challenges resulting from frequent rainfall and high humidity. In August 2018, a Michigan hop gro...

4 citations

Journal ArticleDOI
TL;DR: Evaluated foliar- and drench-applied fungicides against downy mildew and examined Michigan isolates for point mutations linked to carboxylic acid amide (CAA) resistance indicate that Michigan growers can continue to utilize CAA-containing commercial fungicides as part of an overall downy Mildew management program.
Abstract: Hops have expanded as a niche crop in Michigan and other production areas in the eastern United States, but growers in these regions face annual downy mildew outbreaks incited by Pseudoperonospora ...

4 citations

Journal ArticleDOI
TL;DR: In this paper , the authors improved the specific detection of airborne Pseudoperonospora cubensis by adapting qPCR-based assays to distinguish among P. cubensis clade I and II and P. humuli in spore trap samples.
Abstract: Management of cucurbit downy mildew (CDM) caused by Pseudoperonospora cubensis, relies on an intensive fungicide program. In Michigan, CDM occurs annually due to an influx of airborne sporangia; timely alerts of airborne inoculum can assist growers in assessing the need to initiate fungicide sprays. This research aimed to improve the specific detection of airborne P. cubensis sporangia by adapting qPCR-based assays to distinguish among P. cubensis clade I and II and P. humuli in spore trap samples from commercial production sites and research plots. We also evaluated the suitability of impaction spore traps in comparison to Burkard traps for detection of airborne sporangia. A multiplex qPCR assay improved the specificity of P. cubensis clade II detection accelerating the assessment of field spore trap samples. After two years of monitoring, P. cubensis clade II DNA was detected in spore trap samples before CDM symptoms were first observed in cucumber fields (July and August), while P. cubensis clade I DNA was not detected in air samples before or after the disease onset. In some commercial cucumber fields, P. humuli DNA was detected throughout the growing season. The Burkard spore trap appeared to be better suited for recovery of sporangia at low concentrations than the impaction spore trap. This improved methodology for the monitoring of airborne Pseudoperonospora spp. sporangia could be used as part of a CDM risk advisory system to time fungicide applications that protect cucurbit crops in Michigan.
Journal ArticleDOI
TL;DR: In this paper , a four-choice test with control, artificial injured, artificially injured + symptomatic, and inoculated-symptomatic onion suggests that onion thrips distinguish between hosts based on health status.
Abstract: Abstract Insect vector and phytopathogen interactions are mediated by host plants. Insects interact with pathogens directly or indirectly and they may prefer host plants based on infection status. Performance on infected hosts varies depending on the type of pathogen involved. Species specific studies of economically important insects and phytopathogens are needed to understand how these interactions impact crop yields. Onion thrips, Thrips tabaci Lindeman (Thysanoptera:Thripidae), is an economically devastating insect pest of onions (Allium cepa L., Asparagales: Amaryllidaceae) worldwide and it co-occurs simultaneously with many different pathogens. Colletotrichum coccodes (Wallr) (Glomerellales: Glomerellaceae) is a generalist fungal pathogen that attacks onion foliage, causing tan lesions and decreasing yield. Onion thrips and C. coccodes represent two important pests of onions, but the relationship between onion thrips and C. coccodes infected onions has not been studied, and it is unclear if onion thrips contribute to the spread of C. coccodes in onion fields. A four-choice test with control, artificially injured, artificially injured + symptomatic, and inoculated-symptomatic onion suggests that onion thrips distinguish between hosts based on health status. Furthermore, a two-choice test with control, inoculated-asymptomatic, and inoculated-symptomatic onion pairings revealed that onion thrips distinguish between hosts based on infection status and prefer inoculated-symptomatic hosts. In a no-choice test, onion thrips numbers increased on inoculated-symptomatic plants compared to control or inoculated-asymptomatic plants. Overall, we found that onion thrips preferred and performed best on C. coccodes infected plants.
Journal ArticleDOI
TL;DR: The orf359 qPCR assay is specific and sensitive, making it well suited for Ps.
Abstract: Downy mildew-free hop plantlets and rhizomes are essential to limit the introduction of this destructive pathogen, Pseudoperonospora humuli, into hopyards. The objective of this research was to determine which DNA-based diagnostic tools are optimal for Ps. humuli detection in plant tissue. Quantitative, real-time PCR (qPCR) assays with TaqMan probes for nuclear (C125015.3e1) and mitochondrial (orf359) DNA loci were developed and tested side-by-side. A recombinase polymerase amplification (RPA) assay was designed based on the orf359 DNA locus. The mitochondrial qPCR assay had a ten-fold lower limit of detection (100 fg genomic DNA) and was 60% more effective in detecting Ps. humuli in asymptomatic stems than the nuclear-based assay. Both qPCR assays had linear standard curves (R2 > 0.99) but lacked the quantitative precision to differentiate leaf infections beyond 1-day post inoculation. A wide range of Cq values (≥4.9) in standardized tests was observed among isolates, suggesting the number of mitochondria and nuclear DNA targets can vary. The absence of Ps. humuli DNA in symptomatic rhizomes was explained, in part, by the detection of Phytophthora DNA. However, the Phytophthora specific atp9-nad9 assay cross-reacted with Ps. humuli leading to false positive amplification. Sensitivity in the RPA assay was reduced by crude plant DNA extract. Improvements to the objectivity of calling positive amplifications and determining the onset of amplification from RPA fluorescence data were realized by applying the first and second derivatives, respectively. The orf359 qPCR assay is specific and sensitive, making it well suited for Ps. humuli diagnostics in plant tissue.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review summarizes the current knowledge on the symptoms of the disease, life cycle, virulence factors, and management of hop downy mildew, including various forecasting systems available in the world.
Abstract: Pseudoperonospora humuli is an obligate biotrophic oomycete that causes downy mildew, one of the most devastating diseases of cultivated hop, Humulus lupulus. Downy mildew occurs in all production areas of the crop in the Northern Hemisphere and Argentina. The pathogen overwinters in hop crowns and roots, and causes considerable crop loss. Downy mildew is managed by sanitation practices, planting of resistant cultivars, and fungicide applications. However, the scarcity of sources of host resistance and fungicide resistance in pathogen populations complicates disease management. This review summarizes the current knowledge on the symptoms of the disease, life cycle, virulence factors, and management of hop downy mildew, including various forecasting systems available in the world. Additionally, recent developments in genomics and effector discovery, and the future prospects of using such resources in successful disease management are also discussed. Taxonomy Class: Oomycota; Order: Peronosporales; Family: Peronosporaceae; Genus: Pseudoperonospora; Species: Pseudoperonospora humuli. Disease symptoms The disease is characterized by systemically infected chlorotic shoots called "spikes". Leaf symptoms and signs include angular chlorotic lesions and profuse sporulation on the abaxial side of the leaf. Under severe disease pressure, dark brown discolouration or lesions are observed on cones. Infected crowns have brown to black streaks when cut open. Cultivars highly susceptible to crown rot may die at this phase of the disease cycle without producing shoots. However, foliar symptoms may not be present on plants with systemically infected root systems. Infection process Pathogen mycelium overwinters in buds and crowns, and emerges on infected shoots in spring. Profuse sporulation occurs on infected tissues and sporangia are released and dispersed by air currents. Under favourable conditions, sporangia germinate and produce biflagellate zoospores that infect healthy tissue, thus perpetuating the infection cycle. Though oospores are produced in infected tissues, their role in the infection cycle is not defined. Control Downy mildew on hop is managed by a combination of sanitation practices and timely fungicide applications. Forecasting systems are used to time fungicide applications for successful management of the disease. USEFUL WEBSITES: https://content.ces.ncsu.edu/hop-downy-mildew (North Carolina State University disease factsheet), https://www.canr.msu.edu/resources/michigan-hop-management-guide (Michigan Hop Management Guide), http://uspest.org/risk/models (Oregon State University Integrated Plant Protection Center degree-day model for hop downy mildew), https://www.usahops.org/cabinet/data/Field-Guide.pdf (Field Guide for Integrated Pest Management in Hops).

9 citations

Journal ArticleDOI
TL;DR: Pathogenicity studies conducted on fresh detached cannabis buds inoculated with spore suspensions or mycelial plugs showed that B. cinerea, S. sclerotiorum and F. graminearum were the most virulent, while B. porri and D. eres caused significantly less bud rot.
Abstract: Bud rot pathogens cause diseases on Cannabis sativa L. (cannabis, hemp) worldwide through pre- and post-harvest infections of the inflorescence. Seven indoor or outdoor cannabis production sites an...

9 citations

Journal ArticleDOI
TL;DR: Cluster rots can be devastating to grape production around the world as discussed by the authors and there are several late season rots that can affect grape berries, including Botrytis bunch rot, sour rot, black rot, Phomopsis fruit rot, bitter rot, and ripe rot.
Abstract: Cluster rots can be devastating to grape production around the world. There are several late-season rots that can affect grape berries, including Botrytis bunch rot, sour rot, black rot, Phomopsis fruit rot, bitter rot, and ripe rot. Tight-clustered varieties such as ‘Pinot gris’, ‘Pinot noir’, and ‘Vignoles’ are particularly susceptible to cluster rots. Symptoms or signs for these rots range from discolored berries or gray-brown sporulation in Botrytis bunch rot to sour rot, which smells distinctly of vinegar due to the presence of acetic acid bacteria. This review discusses the common symptoms and disease cycles of these different cluster rots. It also includes useful updates on disease diagnostics and management practices, including cultural practices in commercial vineyards and future prospects for disease management. By understanding what drives the development of different cluster rots, researchers will be able to identify new avenues for research to control these critical pathogens.

1 citations

Journal ArticleDOI
TL;DR: Halo blight of hop caused by Diaporthe humulicola has recently been reported in Michigan and Connecticut (Higgins et al. 2021, Allan-Perkins et al 2020). as discussed by the authors reported necrotic foliar lesions and desiccation of the hop strobile (cone) on Chinook and Nugget cultivars.
Abstract: Halo blight of hop caused by Diaporthe humulicola has recently been reported in Michigan and Connecticut (Higgins et al. 2021, Allan-Perkins et al 2020). In August 2020 growers in Quebec, Canada reported necrotic foliar lesions and desiccation of the hop strobile (cone) on Chinook and Nugget cultivars. The foliar lesions were dry concentric circles with a chlorotic halo surrounding the lesions; no pycnidia were observed on leaves or cones. Up to 100% of the infected bract tissue was dry and easily shattered, the grower estimated that more than 90% of the plants in the hopyard exhibited symptoms. Twenty-six isolates were obtained from surface-sterilized leaf and cone tissue by plating the leading edge of lesions on potato dextrose agar. Fungal isolates were hyphal tipped and were incubated at 22°C with a 12 h photoperiod. After 21-days, all cultures were white to beige with pycnidia. DNA was extracted from cultures using the MagMAX Plant DNA Isolation Kit (Applied Biosystems, Foster City, CA). DNA amplification of a representative isolate (CD6C) was performed with primers ITS1/ITS4 (White et al. 1990) for the internal transcribed spacer (ITS), CYLH3F/H3-1b (Glass and Donaldson 1995) for histone 3 (HIS), and Ef1728f/EF1-986R (Carbone and Kohn 1999) for translation elongation factor 1-α (TEF). Amplification primers were used for bidirectional Sanger sequencing, reads were assembled using Geneious Prime (Biomatters, New Zealand), and identified using NCBI BLAST. BLAST results showed that the sequences for TEF, ITS, and HIS all had 100% pairwise identity to Diaporthe sp. 1-MI (MT909101, MT909099, MT909093, OK001342, MZ934713, OK001341). Futhermore, BLAST results showed that ITS and HIS have 100% pairwise identity D. humulicola (MN152929, MN180214). The TEF sequence also had 99.7% pairwise identity to D. humulicola (MN180209). Koch's postulates were conducted by inoculating six 3-mo-old 'Chinook' plants with conidia harvested from 28-day-old cultures and spraying 50 ml of inoculum (6 x 105 conidia/ml) or water to each plant. Plants were then stored in a greenhouse at 100% relative humidity at 22°C with a 14-h photo period. Lesions appeared on the adaxial side of the leaf after 21 days. D. humulicola was re-isolated from all infected leaf tissue, but not from any water inoculated plants and identified by conidial morphology using descriptions from Higgins et al. (2021). So far, Diaporthe sp. 1-MI appears to be synonymous with Diaporthe humulicola, but currently two names are being utilized (i.e. Diaporthe leaf spot and halo blight). In Higgins et al., (2021) it was proposed that the name halo blight might be more appropriate because disease symptoms are not confined to the leaves and cause significant blighting of cones. Halo blight caused by D. humulicola appears widespread in Michigan and Canada and may become an issue in other eastern North American growing regions with humid conditions.

1 citations

Journal ArticleDOI
TL;DR: In 2015, a foliar disease was observed in three hop (Humulus lupulus; unknown cultivars) yards in Ontario, Otsego, and Putnam counties, New York (NY) as mentioned in this paper .
Abstract: In late July and August 2015, foliar disease was observed in three hop (Humulus lupulus; unknown cultivars) yards in Ontario, Otsego, and Putnam counties, New York (NY). Disease incidence ranged between 70 and 90% of plants, and up to 25% of the leaves per plant were affected. Leaf symptoms were large, necrotic patches with a chlorotic halo (2 to 10 cm diam.). Leaves and dry, easily shattered cones were placed at high humidity for 10 days. Pycnidia were abundant in leaf lesions which extruded conidia. Pycnidia were also observed on cone bracts and bracteoles. Fifteen isolations were made from each yard by placing a pycnidium onto 2% water agar + 0.02% (w/v) ampicillin. Colonies were hyphal tipped and transferred to potato dextrose agar (PDA) before incubation at 20°C with a 12-h photoperiod. Colonies on PDA had flat mycelia and were white to cream in color. The isolation frequency was 100%. To induce sporulation, five isolates were grown on PDA with autoclaved alfalfa stems for 7 to 10 days. Alpha conidia were hyaline, and oval with obtuse ends. Mean alpha conidial dimensions were (n = 20): 9.1 m × 3.4 µm (BE1; Ontario Co.); 11.8 × 3.8 µm (BE34; Ontario Co.); 9.6 × 4.1 µm (BE10; Ontario Co.); 10.2 × 3.7 µm (BE52; Otsego Co.); and 10.3 × 3.6 µm (BE69; Putnam Co.). Beta conidia were not observed. DNA was extracted and PCR performed to amplify the internal transcribed spacer (ITS) region (primers ITS1/ITS4; White et al. 1990), translation elongation factor 1-α (TEF; EF1-728F/EF1-986R; Carbone and Kohn 1999), a partial region of β-tubulin (TUB; Bt2a/Bt2b; Glass and Donaldson 1995), a partial region of histone 3 (H3) (H3; CYLH3F/H3-1b Crous et al. 2004), and calmodulin (CAL; CAL-228F/CAL2Rd; Groenewald et al. 2013) genes. For all NY isolates, sequence similarity was >99% to D. humulicola CT2018-3 for the ITS region, and TEF, HIS, and CAL genes. Sequence similarity to CT2018-3 for the TUB region ranged from 86.96% (BE-1) to 96.15% (BE-10). . Analyses with the ITS, TEF, CAL, and HIS sequences supported our identification of the NY isolates as D. humulicola. Sequences were deposited in GenBank (OM370960 to OM370984). For pathogenicity testing, BE-34 and BE-69 were grown on PDA + autoclaved alfalfa stems at room temperature and a 12-h photoperiod for 10 days. Conidia were harvested by flooding the plate with sterile water. Conidial concentration was quantified, and the inoculum suspension diluted to ~5  105 (+ 0.01% polysorbate-20)/ml. Five cv. Cascade plants were sprayed with inoculum until run-off and covered with a plastic bag for 72 h. Non-inoculated control plants were sprayed with 0.01% polysorbate-20 and bagged. Plants were placed in a misting chamber and exposed to alternating 25°C light/18°C dark with a 16 h photoperiod. Mist was applied for 1 h daily. Necrotic lesions like the field specimens were observed on all inoculated plants after 28 days with no symptoms on control plants. Diseased leaves were detached and placed in a humid chamber for 2 days, and pycnidia observed in lesions. The reisolation frequency of D. humulicola was 100%. Conidia from the isolates had similar morphology to the original isolates. This is the first report of halo blight caused by D. humulicola on hop in NY. Halo blight has been reported on hop and associated with significant yield loss through cone shattering in MI (Higgins et al. 2021), CT (Allan-Perkins et al. 2020), and Quebec, Canada (Hatlen et al. 2021). Research is needed to determine if management is warranted.