scispace - formally typeset
Search or ask a question
Author

Douglas W. Stephan

Bio: Douglas W. Stephan is an academic researcher from University of Toronto. The author has contributed to research in topics: Frustrated Lewis pair & Lewis acids and bases. The author has an hindex of 89, co-authored 663 publications receiving 34060 citations. Previous affiliations of Douglas W. Stephan include Northern Illinois University & King Abdulaziz University.


Papers
More filters
Journal ArticleDOI
TL;DR: Sterically encumbered Lewis acid and Lewis base combinations do not undergo the ubiquitous neutralization reaction to form "classical" Lewis acid/Lewis base adducts, but both the unquenched Lewis acidity and basicity of such sterically "frustrated Lewis pairs (FLPs)" is available to carry out unusual reactions.
Abstract: Sterically encumbered Lewis acid and Lewis base combinations do not undergo the ubiquitous neutralization reaction to form "classical" Lewis acid/Lewis base adducts. Rather, both the unquenched Lewis acidity and basicity of such sterically "frustrated Lewis pairs (FLPs)" is available to carry out unusual reactions. Typical examples of frustrated Lewis pairs are inter- or intramolecular combinations of bulky phosphines or amines with strongly electrophilic RB(C(6)F(5))(2) components. Many examples of such frustrated Lewis pairs are able to cleave dihydrogen heterolytically. The resulting H(+)/H(-) pairs (stabilized for example, in the form of the respective phosphonium cation/hydridoborate anion salts) serve as active metal-free catalysts for the hydrogenation of, for example, bulky imines, enamines, or enol ethers. Frustrated Lewis pairs also react with alkenes, aldehydes, and a variety of other small molecules, including carbon dioxide, in cooperative three-component reactions, offering new strategies for synthetic chemistry.

1,621 citations

Journal ArticleDOI
17 Nov 2006-Science
TL;DR: The compound (C6H2Me3)2PH(C 6F4)BH(C6F5)2 (Me, methyl), which is derived through an unusual reaction involving dimesitylphosphine substitution at a para carbon of tris(pentafluorophenyl) borane, cleanly loses H2 at temperatures above 100°C.
Abstract: Although reversible covalent activation of molecular hydrogen (H2) is a common reaction at transition metal centers, it has proven elusive in compounds of the lighter elements. We report that the compound (C6H2Me3)2PH(C6F4)BH(C6F5)2 (Me, methyl), which we derived through an unusual reaction involving dimesitylphosphine substitution at a para carbon of tris(pentafluorophenyl) borane, cleanly loses H2 at temperatures above 100°C. Preliminary kinetic studies reveal this process to be first order. Remarkably, the dehydrogenated product (C6H2Me3)2P(C6F4)B(C6F5)2 is stable and reacts with 1 atmosphere of H2 at 25°C to reform the starting complex. Deuteration studies were also carried out to probe the mechanism.

1,617 citations

Journal ArticleDOI
TL;DR: The current state of this young but rapidly expanding field is outlined in this Review and the future directions for its broadening sphere of impact are considered.
Abstract: Frustrated Lewis pairs (FLPs) are combinations of Lewis acids and Lewis bases in solution that are deterred from strong adduct formation by steric and/or electronic factors. This opens pathways to novel cooperative reactions with added substrates. Small-molecule binding and activation by FLPs has led to the discovery of a variety of new reactions through unprecedented pathways. Hydrogen activation and subsequent manipulation in metal-free catalytic hydrogenations is a frequently observed feature of many FLPs. The current state of this young but rapidly expanding field is outlined in this Review and the future directions for its broadening sphere of impact are considered.

1,249 citations

Journal ArticleDOI
TL;DR: The articulation of the notion of "frustrated Lewis pairs" (FLPs), which emerged from the discovery that H2 can be reversibly activated by combinations of sterically encumbered Lewis acids and bases, has prompted a great deal of recent activity in development of FLP catalysts for the hydrogenation of a range of organic substrates.
Abstract: The articulation of the notion of “frustrated Lewis pairs” (FLPs), which emerged from the discovery that H2 can be reversibly activated by combinations of sterically encumbered Lewis acids and bases, has prompted a great deal of recent activity. Perhaps the most remarkable consequence has been the development of FLP catalysts for the hydrogenation of a range of organic substrates. In the past 9 years, the substrate scope has evolved from bulky polar species to include a wide range of unsaturated organic molecules. In addition, effective stereoselective metal-free hydrogenation catalysts have begun to emerge. The mechanism of this activation of H2 has been explored, and the nature and range of Lewis acid/base combinations capable of effecting such activation have also expanded to include a variety of non-metal species. The reactivity of FLPs with a variety of other small molecules, including olefins, alkynes, and a range of element oxides, has also been developed. Although much of this latter chemistry has...

807 citations

Journal ArticleDOI
TL;DR: The most dramatic finding from FLP chemistry was the discovery that FLPs can activate H2, thus countering the long-existing dogma that metals are required for such activation, and the development of new metal-free catalytic processes are described.
Abstract: CONSPECTUS: Frustrated Lewis pair (FLP) chemistry has emerged in the past decade as a strategy that enables main-group compounds to activate small molecules. This concept is based on the notion that combinations of Lewis acids and bases that are sterically prevented from forming classical Lewis acid-base adducts have Lewis acidity and basicity available for interaction with a third molecule. This concept has been applied to stoichiometric reactivity and then extended to catalysis. This Account describes three examples of such developments: hydrogenation, hydroamination, and CO2 reduction. The most dramatic finding from FLP chemistry was the discovery that FLPs can activate H2, thus countering the long-existing dogma that metals are required for such activation. This finding of stoichiometric reactivity was subsequently evolved to employ simple main-group species as catalysts in hydrogenations. While the initial studies focused on imines, subsequent studies uncovered FLP catalysts for a variety of organic substrates, including enamines, silyl enol ethers, olefins, and alkynes. Moreover, FLP reductions of aromatic anilines and N-heterocycles have been developed, while very recent extensions have uncovered the utility of FLP catalysts for ketone reductions. FLPs have also been shown to undergo stoichiometric reactivity with terminal alkynes. Typically, either deprotonation or FLP addition reaction products are observed, depending largely on the basicity of the Lewis base. While a variety of acid/base combinations have been exploited to afford a variety of zwitterionic products, this reactivity can also be extended to catalysis. When secondary aryl amines are employed, hydroamination of alkynes can be performed catalytically, providing a facile, metal-free route to enamines. In a similar fashion, initial studies of FLPs with CO2 demonstrated their ability to capture this greenhouse gas. Again, modification of the constituents of the FLP led to the discovery of reaction systems that demonstrated stoichiometric reduction of CO2 to either methanol or CO. Further modification led to the development of catalytic systems for the reduction of CO2 by hydrosilylation and hydroboration or deoxygenation. As each of these areas of FLP chemistry has advanced from the observation of unusual stoichiometric reactions to catalytic processes, it is clear that the concept of FLPs provides a new strategy for the design and application of main-group chemistry and the development of new metal-free catalytic processes.

781 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A critical review of recent developments in hydrogenation reaction, with emphases on catalytic reactivity, reactor innovation, and reaction mechanism, provides an overview regarding the challenges and opportunities for future research in the field.
Abstract: Owing to the increasing emissions of carbon dioxide (CO2), human life and the ecological environment have been affected by global warming and climate changes. To mitigate the concentration of CO2 in the atmosphere various strategies have been implemented such as separation, storage, and utilization of CO2. Although it has been explored for many years, hydrogenation reaction, an important representative among chemical conversions of CO2, offers challenging opportunities for sustainable development in energy and the environment. Indeed, the hydrogenation of CO2 not only reduces the increasing CO2 buildup but also produces fuels and chemicals. In this critical review we discuss recent developments in this area, with emphases on catalytic reactivity, reactor innovation, and reaction mechanism. We also provide an overview regarding the challenges and opportunities for future research in the field (319 references).

2,539 citations

Journal ArticleDOI
TL;DR: The graph below shows the progression of monoanionic and non-monoanionic ligands through the history of synthesis, as well as some of the properties that have been identified since the discovery of R-Diimine.
Abstract: B. Anionic Ligands 302 IX. Group 9 Catalysts 302 X. Group 10 Catalysts 303 A. Neutral Ligands 303 1. R-Diimine and Related Ligands 303 2. Other Neutral Nitrogen-Based Ligands 304 3. Chelating Phosphorus-Based Ligands 304 B. Monoanionic Ligands 305 1. [PO] Chelates 305 2. [NO] Chelates 306 3. Other Monoanionic Ligands 306 4. Carbon-Based Ligands 306 XI. Group 11 Catalysts 307 XII. Group 12 Catalysts 307 XIII. Group 13 Catalysts 307 XIV. Summary and Outlook 308 XV. Glossary 308 XVI. References 308

2,369 citations

Journal ArticleDOI
TL;DR: Commercialization of new generations of single-site and metallocene catalyst-based technologies has provided the multibillion pound per year polyolefins industry with the ability to deliver a wide range of new and innovative olefin-based polymers having improved properties.
Abstract: One of the most exciting developments in the areas of catalysis, organometallic chemistry, and polymer science in recent years has been the intense exploration and commercialization of new polymerization technologies based on single-site and metallocene coordination olefin polymerization catalysts.1 The vast number of specifically designed/synthesized transition metal complexes (catalyst precursors) and main-group organometallic compounds (cocatalysts) allows unprecedented control over polymer microstructure, the generation of new polymer architectures, and the development of new polymerization reactions. Commercialization of new generations of single-site and metallocene catalyst-based technologies has provided the multibillion pound per year polyolefins industry with the ability to deliver a wide range of new and innovative olefin-based polymers having improved properties.2-4 The intense industrial activity in the field and the challenges to our basic understanding that have come to light have in turn 1391 Chem. Rev. 2000, 100, 1391−1434

1,719 citations