scispace - formally typeset
Search or ask a question
Author

Dragan Uskoković

Bio: Dragan Uskoković is an academic researcher from Serbian Academy of Sciences and Arts. The author has contributed to research in topics: Sintering & Particle size. The author has an hindex of 38, co-authored 232 publications receiving 5779 citations. Previous affiliations of Dragan Uskoković include University of Novi Sad & National Academy of Sciences of Ukraine.
Topics: Sintering, Particle size, Particle, PLGA, Biomaterial


Papers
More filters
Journal ArticleDOI
TL;DR: Calcium phosphate nanoparticles as carriers of therapeutic agents that would enable a controlled drug release to treat a given bone infection and at the same be resorbed in the body so as to regenerate hard tissue lost to disease are emphasized as one of the potentially attractive smart materials for the modern medicine.
Abstract: The first part of this review looks at the fundamental properties of hydroxyapatite (HAP), the basic mineral constituent of mammalian hard tissues, including the physicochemical features that govern its formation by precipitation. A special emphasis is placed on the analysis of qualities of different methods of synthesis and of the phase transformations intrinsic to the formation of HAP following precipitation from aqueous solutions. This serves as an introduction to the second part and the main subject of this review, which relates to the discourse regarding the prospects of fabrication of ultrafine, nanosized particles based on calcium phosphate carriers with various therapeutic and/or diagnostic agents coated on and/or encapsulated within the particles. It is said that the particles could be either surface-functionalized with amphiphiles, peptides, proteins, or nucleic acids or injected with therapeutic agents, magnetic ions, or fluorescent molecules. Depending on the additive, they could be subsequently used for a variety of applications, including the controlled delivery and release of therapeutic agents (extracellularly or intracellularly), magnetic resonance imaging and hyperthermia therapy, cell separation, blood detoxification, peptide or oligonucleotide chromatography and ultrasensitive detection of biomolecules, and in vivo and in vitro gene transfection. Calcium phosphate nanoparticles as carriers of therapeutic agents that would enable a controlled drug release to treat a given bone infection and at the same be resorbed in the body so as to regenerate hard tissue lost to disease are emphasized hereby as one of the potentially attractive smart materials for the modern medicine.

472 citations

Journal ArticleDOI
TL;DR: A review of the synthesis procedures used for the production of LiFePO 4 powders along with the highlights of doped and coated derivatives is presented in this paper, where several alternative procedures are mentioned.

321 citations

Journal ArticleDOI
TL;DR: The HAp and PLLA obtained were used as constituents of the HAp/PLLA composite biomaterial, a potential material for implants, and had a density of 99.6% and compressive strength of 93.2 MPa.

207 citations

Journal ArticleDOI
TL;DR: Using a homogeneous precipitation method in an ultrasound field, this paper synthesized nanosized, plate-like hydroxyapatite (HAp), which consists of specifically oriented and laterally connected nanorods.
Abstract: Using a homogeneous precipitation method in an ultrasound field, we synthesized nanosized, platelike hydroxyapatite (HAp). The internal structure of these platelike formations consists of specifically oriented and laterally connected nanorods. The synthesized HAp nanorods have a length of about 500 nm and a diameter of about 100 nm. A closer inspection of the microstructure of a single nanorod revealed a highly regular and defect-free lattice with unique crystallographic plane orientations. The obtained structure was related to the influence of the ultrasound on the growth mechanism. The samples were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

202 citations

Journal ArticleDOI
TL;DR: The observed differences in responses of HepG2 cells to exposure to anatase and rutile TiO2 nanoparticles support the evidence that the toxic potential of TiO1 nanoparticles varies not only with particle size but also with crystalline structure.
Abstract: We investigated the genotoxic responses to two types of TiO2 nanoparticles (<25 nm anatase: TiO(2)-An, and <100 nm rutile: TiO2-Ru) in human hepatoma HepG2 cells. Under the applied exposure conditions the particles were agglomerated or aggregated with the size of agglomerates and aggregates in the micrometer range, and were not cytotoxic. TiO2-An, but not TiO2-Ru, caused a persistent increase in DNA strand breaks (comet assay) and oxidized purines (Fpg-comet). TiO2-An was a stronger inducer of intracellular reactive oxygen species (ROS) than TiO2-Ru. Both types of TiO2 nanoparticles transiently upregulated mRNA expression of p53 and its downstream regulated DNA damage responsive genes (mdm2, gadd45α, p21), providing additional evidence that TiO2 nanoparticles are genotoxic. The observed differences in responses of HepG2 cells to exposure to anatase and rutile TiO2 nanoparticles support the evidence that the toxic potential of TiO2 nanoparticles varies not only with particle size but also with crystalline structure.

192 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

PatentDOI
14 Nov 2002-Science
TL;DR: In this paper, pH-induced self-assembly of a peptide-amphiphile was used to make a nanostructured fibrous scaffold reminiscent of extracellular matrix.
Abstract: We have used the pH-induced self-assembly of a peptide-amphiphile to make a nanostructured fibrous scaffold reminiscent of extracellular matrix. The design of this peptide-amphiphile allows the nanofibers to be reversibly cross-linked to enhance or decrease their structural integrity. After cross-linking, the fibers are able to direct mineralization of hydroxyapatite to form a composite material in which the crystallographic c axes of hydroxyapatite are aligned with the long axes of the fibers. This alignment is the same as that observed between collagen fibrils and hydroxyapatite crystals in bone.

3,125 citations

01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination,ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration.
Abstract: Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.

2,627 citations