scispace - formally typeset
Search or ask a question
Author

Dragos Niculescu

Bio: Dragos Niculescu is an academic researcher from Politehnica University of Bucharest. The author has contributed to research in topics: Wireless ad hoc network & Optimized Link State Routing Protocol. The author has an hindex of 22, co-authored 44 publications receiving 8211 citations. Previous affiliations of Dragos Niculescu include Rutgers University & Princeton University.

Papers
More filters
Proceedings ArticleDOI
09 Jul 2003
TL;DR: This paper proposes a method for all nodes to determine their orientation and position in an ad-hoc network where only a fraction of the nodes have positioning capabilities, under the assumption that each node has the AOA capability.
Abstract: Position information of individual nodes is useful in implementing functions such as routing and querying in ad-hoc networks. Deriving position information by using the capability of the nodes to measure time of arrival (TOA), time difference of arrival (TDOA), angle of arrival (AOA) and signal strength have been used to localize nodes relative to a frame of reference. The nodes in an ad-hoc network can have multiple capabilities and exploiting one or more of the capabilities can improve the quality of positioning. In this paper, we show how AOA capability of the nodes can be used to derive position information. We propose a method for all nodes to determine their orientation and position in an ad-hoc network where only a fraction of the nodes have positioning capabilities, under the assumption that each node has the AOA capability.

2,285 citations

Proceedings ArticleDOI
01 Dec 2001
TL;DR: This work is proposing APS - a distributed, hop by hop positioning algorithm, that works as an extension of both distance vector routing and GPS positioning in order to provide approximate location for all nodes in a network where only a limited fraction of nodes have self location capability.
Abstract: Many ad hoc network protocols and applications assume the knowledge of geographic location of nodes. The absolute location of each networked node is an assumed fact by most sensor networks which can then present the sensed information on a geographical map. Finding location without the aid of GPS in each node of an ad hoc network is important in cases where GPS is either not accessible, or not practical to use due to power, form factor or line of sight conditions. Location would also enable routing in sufficiently isotropic large networks, without the use of large routing tables. We are proposing APS - a distributed, hop by hop positioning algorithm, that works as an extension of both distance vector routing and GPS positioning in order to provide approximate location for all nodes in a network where only a limited fraction of nodes have self location capability.

1,887 citations

Journal ArticleDOI
TL;DR: This work is proposing APS – a localized, distributed, hop by hop positioning algorithm, that works as an extension of both distance vector routing and GPS positioning in order to provide approximate position for all nodes in a network where only a limited fraction of nodes have self positioning capability.
Abstract: Many ad hoc network protocols and applications assume the knowledge of geographic location of nodes. The absolute position of each networked node is an assumed fact by most sensor networks which can then present the sensed information on a geographical map. Finding position without the aid of GPS in each node of an ad hoc network is important in cases where GPS is either not accessible, or not practical to use due to power, form factor or line of sight conditions. Position would also enable routing in sufficiently isotropic large networks, without the use of large routing tables. We are proposing APS --- a localized, distributed, hop by hop positioning algorithm, that works as an extension of both distance vector routing and GPS positioning in order to provide approximate position for all nodes in a network where only a limited fraction of nodes have self positioning capability.

1,700 citations

Proceedings ArticleDOI
14 Sep 2003
TL;DR: TBF decouples path naming from the actual path; it provides cheap path diversity; it trades off communication for computation; and these aspects address the double scalability issue with respect to mobility rate and network size.
Abstract: Trajectory based forwarding (TBF) is a novel methodto forward packets in a dense ad hoc network that makes it possible to route a packet along a predefined curve. It is a hybrid between source based routing and Cartesian forwarding in that the trajectory is set by the source, but the forwarding decision is based on the relationship to the trajectory rather than names of intermediate nodes. The fundamental aspects of TBF are: it decouples path naming from the actual path; it provides cheap path diversity; it trades off communication for computation. These aspects address the double scalability issue with respect to mobility rate and network size. In addition, TBF provides a common framework for many services such as: broadcasting, discovery, unicast, multicast and multipath routing in ad hoc networks. TBF requires that nodes know their position relative to a coordinate system. While a global coordinate system afforded by a system such as GPS would be ideal, approximate positioning methods provided by other algorithms are also usable.

398 citations

Journal ArticleDOI
TL;DR: This article surveys methods used to infer locations in a multihop fashion in networks with or without the mentioned capabilities.
Abstract: Position and orientation of individual nodes in ad hoc sensor networks are useful for both service and application implementation. Services that can be enabled by availability of position include routing and querying. At application level, position is required in order to label the reported data in a sensor network, whereas position and orientation enable tracking. Nodes may have local capabilities such as the possibility of measuring ranges to neighbors, angle of arrival, or global capabilities, such as GPS and digital compasses. This article surveys methods used to infer locations in a multihop fashion in networks with or without the mentioned capabilities.

263 citations


Cited by
More filters
Journal ArticleDOI
01 Nov 2007
TL;DR: Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.
Abstract: Wireless indoor positioning systems have become very popular in recent years. These systems have been successfully used in many applications such as asset tracking and inventory management. This paper provides an overview of the existing wireless indoor positioning solutions and attempts to classify different techniques and systems. Three typical location estimation schemes of triangulation, scene analysis, and proximity are analyzed. We also discuss location fingerprinting in detail since it is used in most current system or solutions. We then examine a set of properties by which location systems are evaluated, and apply this evaluation method to survey a number of existing systems. Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.

4,123 citations

Journal ArticleDOI
01 May 2005
TL;DR: The three main categories explored in this paper are data-centric, hierarchical and location-based; each routing protocol is described and discussed under the appropriate category.
Abstract: Recent advances in wireless sensor networks have led to many new protocols specifically designed for sensor networks where energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. This paper surveys recent routing protocols for sensor networks and presents a classification for the various approaches pursued. The three main categories explored in this paper are data-centric, hierarchical and location-based. Each routing protocol is described and discussed under the appropriate category. Moreover, protocols using contemporary methodologies such as network flow and quality of service modeling are also discussed. The paper concludes with open research issues. � 2003 Elsevier B.V. All rights reserved.

3,573 citations

Journal ArticleDOI
TL;DR: Using the models, the authors have shown the calculation of a Cramer-Rao bound (CRB) on the location estimation precision possible for a given set of measurements in wireless sensor networks.
Abstract: Accurate and low-cost sensor localization is a critical requirement for the deployment of wireless sensor networks in a wide variety of applications. In cooperative localization, sensors work together in a peer-to-peer manner to make measurements and then forms a map of the network. Various application requirements influence the design of sensor localization systems. In this article, the authors describe the measurement-based statistical models useful to describe time-of-arrival (TOA), angle-of-arrival (AOA), and received-signal-strength (RSS) measurements in wireless sensor networks. Wideband and ultra-wideband (UWB) measurements, and RF and acoustic media are also discussed. Using the models, the authors have shown the calculation of a Cramer-Rao bound (CRB) on the location estimation precision possible for a given set of measurements. The article briefly surveys a large and growing body of sensor localization algorithms. This article is intended to emphasize the basic statistical signal processing background necessary to understand the state-of-the-art and to make progress in the new and largely open areas of sensor network localization research.

3,080 citations

01 Jan 2003
TL;DR: This paper presents APIT, a novel localization algorithm that is range-free, and shows that the APIT scheme performs best when an irregular radio pattern and random node placement are considered, and low communication overhead is desired.
Abstract: Sensor Networks have been proposed for a multitude of location-dependent applications. For such systems, the cost and limitations of the hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point- to-point distance estimates. Because coarse accuracy is sufficient for most sensor network applications, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. In this paper, we present APIT, a novel localization algorithm that is range-free. We show that our APIT scheme performs best when an irregular radio pattern and random node placement are considered, and low communication overhead is desired. We compare our work via extensive simulation, with three state-of-the-art range-free localization schemes to identify the preferable system configurations of each. In addition, we study the effect of location error on routing and tracking performance. We show that routing performance and tracking accuracy are not significantly affected by localization error when the error is less than 0.4 times the communication radio radius.

2,515 citations