scispace - formally typeset
Search or ask a question
Author

Dragutin Petkovic

Bio: Dragutin Petkovic is an academic researcher from IBM. The author has contributed to research in topics: Search engine indexing & Image retrieval. The author has an hindex of 30, co-authored 62 publications receiving 12808 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The Query by Image Content (QBIC) system as discussed by the authors allows queries on large image and video databases based on example images, user-constructed sketches and drawings, selected color and texture patterns, camera and object motion, and other graphical information.
Abstract: Research on ways to extend and improve query methods for image databases is widespread. We have developed the QBIC (Query by Image Content) system to explore content-based retrieval methods. QBIC allows queries on large image and video databases based on example images, user-constructed sketches and drawings, selected color and texture patterns, camera and object motion, and other graphical information. Two key properties of QBIC are (1) its use of image and video content-computable properties of color, texture, shape and motion of images, videos and their objects-in the queries, and (2) its graphical query language, in which queries are posed by drawing, selecting and other graphical means. This article describes the QBIC system and demonstrates its query capabilities. QBIC technology is part of several IBM products. >

3,957 citations

Proceedings ArticleDOI
TL;DR: The main algorithms for color texture, shape and sketch query that are presented, show example query results, and discuss future directions are presented.
Abstract: In the query by image content (QBIC) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include medical (`Give me other images that contain a tumor with a texture like this one'), photo-journalism (`Give me images that have blue at the top and red at the bottom'), and many others in art, fashion, cataloging, retailing, and industry. Key issues include derivation and computation of attributes of images and objects that provide useful query functionality, retrieval methods based on similarity as opposed to exact match, query by image example or user drawn image, the user interfaces, query refinement and navigation, high dimensional database indexing, and automatic and semi-automatic database population. We currently have a prototype system written in X/Motif and C running on an RS/6000 that allows a variety of queries, and a test database of over 1000 images and 1000 objects populated from commercially available photo clip art images. In this paper we present the main algorithms for color texture, shape and sketch query that we use, show example query results, and discuss future directions.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

2,127 citations

Proceedings Article
30 May 1997
TL;DR: The Query by Image Content (QBIC) system as mentioned in this paper allows queries on large image and video databases based on example images, user-constructed sketches and drawings, selected color and texture patterns, camera and object motion, and other graphical information.
Abstract: Research on ways to extend and improve query methods for image databases is widespread. We have developed the QBIC (Query by Image Content) system to explore content-based retrieval methods. QBIC allows queries on large image and video databases based on example images, user-constructed sketches and drawings, selected color and texture patterns, camera and object motion, and other graphical information. Two key properties of QBIC are (1) its use of image and video content-computable properties of color, texture, shape and motion of images, videos and their objects-in the queries, and (2) its graphical query language, in which queries are posed by drawing, selecting and other graphical means. This article describes the QBIC system and demonstrates its query capabilities. QBIC technology is part of several IBM products. >

1,597 citations

Journal ArticleDOI
01 Jul 1994
TL;DR: A set of novel features and similarity measures allowing query by image content, together with the QBIC system, and a new theorem that makes efficient filtering possible by bounding the non-Euclidean, full cross-term quadratic distance expression with a simple Euclidean distance.
Abstract: In the QBIC (Query By Image Content) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, shape, position, and dominant edges of image objects and regions. Potential applications include medical (“Give me other images that contain a tumor with a texture like this one”), photo-journalism (“Give me images that have blue at the top and red at the bottom”), and many others in art, fashion, cataloging, retailing, and industry. We describe a set of novel features and similarity measures allowing query by image content, together with the QBIC system we implemented. We demonstrate the effectiveness of our system with normalized precision and recall experiments on test databases containing over 1000 images and 1000 objects populated from commercially available photo clip art images, and of images of airplane silhouettes. We also present new methods for efficient processing of QBIC queries that consist of filtering and indexing steps. We specifically address two problems: (a) non Euclidean distance measures; and (b) the high dimensionality of feature vectors. For the first problem, we introduce a new theorem that makes efficient filtering possible by bounding the non-Euclidean, full cross-term quadratic distance expression with a simple Euclidean distance. For the second, we illustrate how orthogonal transforms, such as Karhunen Loeve, can help reduce the dimensionality of the search space. Our methods are general and allow some “false hits” but no false dismissals. The resulting QBIC system offers effective retrieval using image content, and for large image databases significant speedup over straightforward indexing alternatives. The system is implemented in X/Motif and C running on an RS/6000.

1,285 citations

Patent
23 Mar 1994
TL;DR: In this article, images in an image database are searched in response to queries which include the visual characteristics of the images such as colors, textures, shapes, and sizes, as well as by textual tags appended to the images.
Abstract: Images in an image database are searched in response to queries which include the visual characteristics of the images such as colors, textures, shapes, and sizes, as well as by textual tags appended to the images. Queries are constructed in an image query construction area in response to values of representations of the visual characteristics and to locations of the representations in the image query construction area.

641 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Journal ArticleDOI
TL;DR: The working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap are discussed, as well as aspects of system engineering: databases, system architecture, and evaluation.
Abstract: Presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.

6,447 citations

Journal ArticleDOI
TL;DR: This paper investigates the properties of a metric between two distributions, the Earth Mover's Distance (EMD), for content-based image retrieval, and compares the retrieval performance of the EMD with that of other distances.
Abstract: We investigate the properties of a metric between two distributions, the Earth Mover's Distance (EMD), for content-based image retrieval. The EMD is based on the minimal cost that must be paid to transform one distribution into the other, in a precise sense, and was first proposed for certain vision problems by Peleg, Werman, and Rom. For image retrieval, we combine this idea with a representation scheme for distributions that is based on vector quantization. This combination leads to an image comparison framework that often accounts for perceptual similarity better than other previously proposed methods. The EMD is based on a solution to the transportation problem from linear optimization, for which efficient algorithms are available, and also allows naturally for partial matching. It is more robust than histogram matching techniques, in that it can operate on variable-length representations of the distributions that avoid quantization and other binning problems typical of histograms. When used to compare distributions with the same overall mass, the EMD is a true metric. In this paper we focus on applications to color and texture, and we compare the retrieval performance of the EMD with that of other distances.

4,593 citations

Proceedings ArticleDOI
23 May 1998
TL;DR: In this paper, the authors present two algorithms for the approximate nearest neighbor problem in high-dimensional spaces, for data sets of size n living in R d, which require space that is only polynomial in n and d.
Abstract: We present two algorithms for the approximate nearest neighbor problem in high-dimensional spaces. For data sets of size n living in R d , the algorithms require space that is only polynomial in n and d, while achieving query times that are sub-linear in n and polynomial in d. We also show applications to other high-dimensional geometric problems, such as the approximate minimum spanning tree. The article is based on the material from the authors' STOC'98 and FOCS'01 papers. It unifies, generalizes and simplifies the results from those papers.

4,478 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations